cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072219 Any number n can be written uniquely in the form n = 2^k_1 - 2^k_2 + 2^k_3 - ... + 2^k_{2r+1} where the signs alternate, there are an odd number of terms, and k_1 > k_2 > k_3 > ... > k_{2r+1} >= 0; sequence gives number of terms 2r+1.

Original entry on oeis.org

1, 1, 3, 1, 3, 3, 3, 1, 3, 3, 5, 3, 3, 3, 3, 1, 3, 3, 5, 3, 5, 5, 5, 3, 3, 3, 5, 3, 3, 3, 3, 1, 3, 3, 5, 3, 5, 5, 5, 3, 5, 5, 7, 5, 5, 5, 5, 3, 3, 3, 5, 3, 5, 5, 5, 3, 3, 3, 5, 3, 3, 3, 3, 1, 3, 3, 5, 3, 5, 5, 5, 3, 5, 5, 7, 5, 5, 5, 5, 3, 5, 5, 7, 5, 7, 7, 7, 5, 5, 5, 7, 5, 5, 5, 5, 3, 3, 3, 5, 3, 5, 5, 5, 3, 5
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2002

Keywords

Comments

2^k_1 is smallest power of 2 that is >= n.
The first Mathematica program computes the sequence for numbers 1 to 2^m. - T. D. Noe, Jul 15 2002
a(A000079(n)) = 1; a(A238246(n)) = 3; a(A238247(n)) = 5; a(A238248(n)) = 7. - Reinhard Zumkeller, Feb 20 2014
Add 1 to every other terms of A005811. - N. J. A. Sloane, Jan 14 2017

Examples

			1=1, 2=2, 3=4-2+1, 4=4, 5=8-4+1, 6=8-4+2, ...
		

References

  • P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, pp. 61-62.

Crossrefs

Programs

  • Haskell
    a072219 = (+ 1) . (* 2) . a033264 . subtract 1
    -- Reinhard Zumkeller, Feb 20 2014
  • Mathematica
    Needs["DiscreteMath`Combinatorica`"]; sumit[s_List] := Module[{i, ss=0}, Do[If[OddQ[i], ss+=s[[i]], ss-=s[[i]]], {i, Length[s]}]; ss]; m=8; powers=Table[2^i, {i, 0, m}]; lst=Table[0, {2^m}]; sets={}; Do[sets=Union[sets, KSubsets[powers, i]], {i, 1, m+1, 2}]; Do[t=sets[[i]]; lst[[sumit[t]]]=Length[t], {i, Length[sets]}]; lst
    (* second program *)
    a[n_] := 2 Count[Split[IntegerDigits[n-1, 2], #1 == 1 && #2 == 0 &], {1, 0} ] + 1; Array[a, 105] (* Jean-François Alcover, Apr 01 2016 *)

Formula

G.f.: 1/(1+x) + (1/(1-x)) * Sum_{r>=0} x^(2^r) / (1+x^(2^(r+1))). - Ramasamy Chandramouli, Dec 22 2012

Extensions

More terms from T. D. Noe, Jul 15 2002