cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072258 a(n) = ((6*n+1)*4^n - 1)/3.

Original entry on oeis.org

0, 9, 69, 405, 2133, 10581, 50517, 234837, 1070421, 4805973, 21321045, 93672789, 408245589, 1767200085, 7605671253, 32570168661, 138870609237, 589842175317, 2496807654741, 10536986432853
Offset: 0

Views

Author

N. Rathankar (rathankar(AT)yahoo.com), Jul 08 2002

Keywords

Comments

Related to Collatz function (for n>0). All divisible by 3.

Crossrefs

Programs

  • GAP
    List([0..40], n-> ((6*n+1)*4^n -1)/3); # G. C. Greubel, Jan 14 2020
  • Magma
    [((6*n+1)*4^n -1)/3: n in [0..40]]; // G. C. Greubel, Jan 14 2020
    
  • Maple
    seq( ((6*n+1)*4^n -1)/3, n=0..40); # G. C. Greubel, Jan 14 2020
  • Mathematica
    LinearRecurrence[{9,-24,16}, {0,9,69}, 40] (* G. C. Greubel, Jan 14 2020 *)
  • PARI
    a(n)=((6*n+1)*4^n-1)/3 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [((6*n+1)*4^n -1)/3 for n in (0..40)] # G. C. Greubel, Jan 14 2020
    

Formula

G.f.: 3*x*(3-4*x)/((1-x)*(1-4*x)^2). - Bruno Berselli, Dec 16 2011
E.g.f.: ( (1 + 24*x)*exp(4*x) - exp(x) )/3. - G. C. Greubel, Jan 14 2020

Extensions

Edited and extended by Henry Bottomley, Aug 06 2002