A072258 a(n) = ((6*n+1)*4^n - 1)/3.
0, 9, 69, 405, 2133, 10581, 50517, 234837, 1070421, 4805973, 21321045, 93672789, 408245589, 1767200085, 7605671253, 32570168661, 138870609237, 589842175317, 2496807654741, 10536986432853
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-24,16).
Programs
-
GAP
List([0..40], n-> ((6*n+1)*4^n -1)/3); # G. C. Greubel, Jan 14 2020
-
Magma
[((6*n+1)*4^n -1)/3: n in [0..40]]; // G. C. Greubel, Jan 14 2020
-
Maple
seq( ((6*n+1)*4^n -1)/3, n=0..40); # G. C. Greubel, Jan 14 2020
-
Mathematica
LinearRecurrence[{9,-24,16}, {0,9,69}, 40] (* G. C. Greubel, Jan 14 2020 *)
-
PARI
a(n)=((6*n+1)*4^n-1)/3 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[((6*n+1)*4^n -1)/3 for n in (0..40)] # G. C. Greubel, Jan 14 2020
Formula
G.f.: 3*x*(3-4*x)/((1-x)*(1-4*x)^2). - Bruno Berselli, Dec 16 2011
E.g.f.: ( (1 + 24*x)*exp(4*x) - exp(x) )/3. - G. C. Greubel, Jan 14 2020
Extensions
Edited and extended by Henry Bottomley, Aug 06 2002
Comments