A072261 a(n) = 4*a(n-1) + 1, a(1)=7.
7, 29, 117, 469, 1877, 7509, 30037, 120149, 480597, 1922389, 7689557, 30758229, 123032917, 492131669, 1968526677, 7874106709, 31496426837, 125985707349, 503942829397, 2015771317589, 8063085270357, 32252341081429, 129009364325717, 516037457302869
Offset: 1
Links
Crossrefs
Programs
-
GAP
List([1..25], n-> (11*4^n -2)/6); # G. C. Greubel, Jan 14 2020
-
Magma
[(11*4^n -2)/6: n in [1..25]]; // G. C. Greubel, Jan 14 2020
-
Maple
seq(coeff(series(x*(7-6*x)/((1-x)*(1-4*x)), x, n+1), x, n), n = 1..25); # G. C. Greubel, Jan 14 2020
-
Mathematica
a[n_]:= 4a[n-1] +1; a[1]=7; Table[a[n], {n,25}] NestList[4#+1&,7,30] (* or *) LinearRecurrence[{5,-4},{7,29},30] (* Harvey P. Dale, Sep 04 2023 *)
-
PARI
Vec(x*(7-6*x)/((1-x)*(1-4*x)) + O(x^25)) \\ Colin Barker, Oct 27 2019
-
Sage
[(11*4^n -2)/6 for n in (1..25)] # G. C. Greubel, Jan 14 2020
Formula
a(n) = (11*4^n - 2)/6 = 22*A002450(n-1) + 7. - Lambert Klasen (lambert.klasen(AT)gmx.de), Nov 08 2004
From Colin Barker, Oct 27 2019: (Start)
G.f.: x*(7 - 6*x) / ((1 - x)*(1 - 4*x)).
a(n) = 5*a(n-1) - 4*a(n-2) for n>2. (End)
E.g.f.: (-9 - 2*exp(x) + 11*exp(4*x))/6. - G. C. Greubel, Jan 14 2020
a(n) = a(n-1) + 11*2^(2*n-3), for n >= 2, with a(1) = 7. - Wolfdieter Lang, Aug 16 2021
Extensions
Edited and extended by Robert G. Wilson v, Jul 17 2002
More terms from Colin Barker, Oct 27 2019
Comments