cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377573 Cogrowth sequence for the 14-element dihedral group D7 = .

Original entry on oeis.org

1, 0, 1, 0, 3, 0, 10, 1, 35, 9, 126, 55, 462, 286, 1717, 1365, 6451, 6188, 24463, 27132, 93518, 116281, 360031, 490337, 1394582, 2043275, 5430530, 8439210, 21242341, 34621041, 83411715, 141290436, 328589491, 574274008, 1297937234, 2326683921, 5138431851
Offset: 0

Views

Author

Sean A. Irvine, Nov 01 2024

Keywords

Comments

Taking the overlay of the two generating functions in the bisections A072844 and A072266, shows that a(n) = A094052(n-1), n>0. - R. J. Mathar, Nov 05 2024

Examples

			a(4) = 3 corresponds to the TTTT = TSTS = STST = 1. Note: TSTS = (TSTS)(TT) = T(STST)T = TT = 1.
a(9) = 9 corresponds to the words SSSSSSSTT = SSSSSSTTS = SSSSSTTSS = SSSSTTSSS = SSSTTSSSS = SSTTSSSSS = STTSSSSSS = TTSSSSSSS = TSSSSSSST = 1.
		

Crossrefs

Bisections: A072266, A072844.
Cf. A052964 (D5), A007583 (D6), A007582 (D8).

Formula

G.f.: F_7(x) where F_n(x) = 1/2 + (1/(2*n)) * Sum_{j=0..n-1} 1 / (1 - 2*cos(2*Pi*j/n)*x).

A072844 Number of words of length 2n-1 generated by the two letters s and t that reduce to the identity 1 by using the relations sssssss=1, tt=1 and stst=1. The generators s and t along with the three relations generate the 14-element dihedral group D7.

Original entry on oeis.org

0, 0, 0, 1, 9, 55, 286, 1365, 6188, 27132, 116281, 490337, 2043275, 8439210, 34621041, 141290436, 574274008, 2326683921, 9402807817, 37923176863, 152705590518, 614111175965, 2467123420524, 9903167265124, 39725253489545
Offset: 1

Views

Author

Jamaine Paddyfoot and John W. Layman, Jul 24 2002

Keywords

Examples

			The 9 words of length 9 are ssssssstt, sssssstts, sssssttss, ssssttsss, sssttssss, ssttsssss, sttssssss, ttsssssss, tssssssst. - _Sean A. Irvine_, Oct 31 2024
		

References

  • H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, Fourth Edition, (p.134).

Crossrefs

Cf. A072266.
Bisection of A377573.

Formula

a(n) = 9*a(n-1) - 26*a(n-2) + 25*a(n-3) - 4*a(n-4).
g.f.: x^4 / ((1 - 4*x)*(1 - 5*x + 6*x^2 - x^3)). - Colin Barker, Feb 24 2017
28*a(n) = 4^n -4*( 2*A005021(n) -9*A005021(n-1) +11*A005021(n-2) ). - R. J. Mathar, Nov 05 2024
Showing 1-2 of 2 results.