cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A095364 Number of walks of length n between two adjacent nodes in the cycle graph C_9.

Original entry on oeis.org

1, 0, 3, 0, 10, 0, 35, 1, 126, 11, 462, 78, 1716, 455, 6435, 2380, 24311, 11628, 92398, 54264, 352947, 245157, 1354102, 1081575, 5215250, 4686826, 20156580, 20030039, 78152535, 84672780, 303906051, 354822776, 1184959314, 1476390160
Offset: 1

Views

Author

Herbert Kociemba, Jul 03 2004

Keywords

Comments

In general 2^n/m*Sum(r,0,m-1,Cos(2Pi*k*r/m)Cos(2Pi*r/m)^n) is the number of walks of length n between two nodes at distance k in the cycle graph C_m. Here we have m=9 and k=1.
Also, with offset 2, the cogrowth sequence of the 18-element group D9 = . - Sean A. Irvine, Nov 14 2024

Crossrefs

Cf. A007582 (D8), A377573 (D7).

Programs

  • PARI
    a(n) = round(2^n/9*sum(r=0, 8, cos(2*Pi*r/9)^(n+1))) \\ Michel Marcus, Jul 18 2013
    
  • PARI
    Vec( x*(-1+x+2*x^2-x^3)/((1+x)*(-1+2*x)*(1-3*x^2+x^3))+O(x^66) ) \\ Joerg Arndt, Jul 18 2013

Formula

a(n) = 2^n/9 * sum(r=0..8, cos(2*Pi*r/9)^(n+1)).
G.f.: x(-1+x+2x^2-x^3)/((1+x)(-1+2x)(1-3x^2+x^3)).
a(n) = a(n-1) + 5*a(n-2) - 4*a(n-3) - 5*a(n-4) + 2*a(n-5).

A072266 Number of words of length 2n generated by the two letters s and t that reduce to the identity 1 using the relations sssssss=1, tt=1 and stst=1. The generators s and t along with the three relations generate the 14-element dihedral group D7.

Original entry on oeis.org

1, 1, 3, 10, 35, 126, 462, 1717, 6451, 24463, 93518, 360031, 1394582, 5430530, 21242341, 83411715, 328589491, 1297937234, 5138431851, 20380608990, 80960325670, 322016144629, 1282138331587, 5109310929719, 20374764059254
Offset: 0

Views

Author

Jamaine Paddyfoot (jay_paddyfoot(AT)hotmail.com) and John W. Layman, Jul 08 2002

Keywords

Examples

			The words tttt=tsts=stst=1 so a(2)=3.
		

Crossrefs

Bisection of A377573.

Programs

  • Mathematica
    LinearRecurrence[{9,-26,25,-4},{1,1,3,10,35},30] (* Harvey P. Dale, Apr 16 2022 *)
  • PARI
    a(n)=if(n<1,n==0,sum(k=-(n-1)\7,(n-1)\7,C(2*n-1,n+7*k)))
    
  • PARI
    Vec((1 - 8*x + 20*x^2 - 16*x^3 + 2*x^4) / ((1 - 4*x)*(1 - 5*x + 6*x^2 - x^3)) + O(x^30)) \\ Colin Barker, Apr 26 2019

Formula

G.f.: 1 -x*(2*x-1)*(x^2-4*x+1)/((4*x-1)*(x^3-6*x^2+5*x-1)). - Michael Somos, Jul 21 2002
a(n) = 9*a(n-1) - 26*a(n-2) + 25*a(n-3) - 4*a(n-4) for n>4. - Colin Barker, Apr 26 2019
14*a(n) = 4^n +2*(3*A005021(n) -10*A005021(n-1) +6*A005021(n-2)), n>0. - R. J. Mathar, Nov 05 2024

A072844 Number of words of length 2n-1 generated by the two letters s and t that reduce to the identity 1 by using the relations sssssss=1, tt=1 and stst=1. The generators s and t along with the three relations generate the 14-element dihedral group D7.

Original entry on oeis.org

0, 0, 0, 1, 9, 55, 286, 1365, 6188, 27132, 116281, 490337, 2043275, 8439210, 34621041, 141290436, 574274008, 2326683921, 9402807817, 37923176863, 152705590518, 614111175965, 2467123420524, 9903167265124, 39725253489545
Offset: 1

Views

Author

Jamaine Paddyfoot and John W. Layman, Jul 24 2002

Keywords

Examples

			The 9 words of length 9 are ssssssstt, sssssstts, sssssttss, ssssttsss, sssttssss, ssttsssss, sttssssss, ttsssssss, tssssssst. - _Sean A. Irvine_, Oct 31 2024
		

References

  • H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, Fourth Edition, (p.134).

Crossrefs

Cf. A072266.
Bisection of A377573.

Formula

a(n) = 9*a(n-1) - 26*a(n-2) + 25*a(n-3) - 4*a(n-4).
g.f.: x^4 / ((1 - 4*x)*(1 - 5*x + 6*x^2 - x^3)). - Colin Barker, Feb 24 2017
28*a(n) = 4^n -4*( 2*A005021(n) -9*A005021(n-1) +11*A005021(n-2) ). - R. J. Mathar, Nov 05 2024
Showing 1-3 of 3 results.