cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A095369 Number of walks of length n between two nodes at distance 4 in the cycle graph C_9.

Original entry on oeis.org

1, 1, 6, 7, 28, 36, 120, 165, 495, 716, 2003, 3018, 8024, 12512, 31977, 51357, 127110, 209475, 504736, 850840, 2003784, 3445885, 7956715, 13926276, 31609071, 56191734, 125640180, 226444616, 499685777, 911607609, 1988440598
Offset: 4

Views

Author

Herbert Kociemba, Jul 03 2004

Keywords

Comments

In general, (2^n/m)*Sum_{r=0..m-1} cos(2*Pi*k*r/m)*cos(2*Pi*r/m)^n is the number of walks of length n between two nodes at distance k in the cycle graph C_m. Here we have m=9 and k=4.

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[-x^4/((1 + x) (-1 + 2 x) (1 - 3 x^2 + x^3)), {x, 0, 34}], x], 4] (* Michael De Vlieger, Jan 23 2022 *)

Formula

a(n) = (2^n/9)*Sum_{r=0..8} cos(8*Pi*r/9)*cos(2*Pi*r/9)^n.
G.f.: x^4/((1+x)(-1+2x)(1-3x^2+x^3)).
a(n) = a(n-1) + 5*a(n-2) - 4*a(n-3) - 5*a(n-4) + 2*a(n-5).

A095367 Number of walks of length n between two nodes at distance 2 in the cycle graph C_9.

Original entry on oeis.org

1, 0, 4, 0, 15, 1, 56, 9, 210, 56, 792, 299, 3003, 1470, 11441, 6868, 43776, 31008, 168151, 136629, 648208, 591261, 2507046, 2523676, 9726080, 10656387, 37839375, 44612702, 147600981, 185477216, 577147212, 766744608, 2261792303
Offset: 2

Views

Author

Herbert Kociemba, Jul 03 2004

Keywords

Comments

In general (2^n/m)*Sum_{r=0..m-1} cos(2*Pi*k*r/m)*cos(2*Pi*r/m)^n is the number of walks of length n between two nodes at distance k in the cycle graph C_m. Here we have m=9 and k=2.

Crossrefs

Formula

a(n) = (2^n/9)*Sum_{r=0..8} cos(4*Pi*r/9)*cos(2*Pi*r/9)^n.
G.f.: x^2(-1+x+x^2)/((1+x)*(-1+2x)*(1-3x^2+x^3));
a(n) = a(n-1) + 5*a(n-2) - 4*a(n-3) - 5*a(n-4) + 2*a(n-5).

A095368 Number of walks of length n between two nodes at distance 3 in the cycle graph C_9.

Original entry on oeis.org

1, 0, 5, 1, 21, 8, 84, 45, 330, 221, 1287, 1015, 5006, 4488, 19465, 19380, 75753, 82365, 295261, 346104, 1152944, 1442101, 4510830, 5969561, 17682795, 24582663, 69448446, 100804436, 273241161, 411921832, 1076832989
Offset: 3

Views

Author

Herbert Kociemba, Jul 03 2004

Keywords

Comments

In general (2^n/m)*Sum_{r=0..m-1} cos(2Pi*k*r/m)*cos(2Pi*r/m)^n is the number of walks of length n between two nodes at distance k in the cycle graph C_m. Here we have m=9 and k=3.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,5,-4,-5,2},{1,0,5,1,21},40] (* Harvey P. Dale, Dec 21 2024 *)

Formula

a(n) = (2^n/9)*Sum_{r=0..8} cos(2Pi*r/3)*cos(2Pi*r/9)^n.
G.f.: (-1+x)x^3/((1+x)(-1+2x)(1-3x^2+x^3)).
a(n) = a(n-1)+5a(n-2)-4a(n-3)-5a(n-4)+2a(n-5).

A378031 Cogrowth sequence for the 18-element group C6 X C3 = .

Original entry on oeis.org

1, 1, 2, 85, 926, 5461, 37130, 349525, 2973350, 22369621, 174174002, 1431655765, 11582386286, 91625968981, 729520967450, 5864062014805, 47006639297270, 375299968947541, 2999857885752002, 24019198012642645, 192222214478506046, 1537228672809129301
Offset: 0

Views

Author

Sean A. Irvine, Nov 14 2024

Keywords

Comments

Sequence gives terms for n = 0 (mod 3), all other terms are 0.

Crossrefs

Cf. A095364 (D9), A377627 (C6 X C2), A007613 (C3 X C3), A378109 (S3 X C3), A378110 (S3:C3).

Formula

G.f.: (36*x^4+99*x^3-14*x^2+6*x-1) / ((8*x-1) * (x+1) * (27*x^2+1)).

A378109 Cogrowth sequence of the 18-element group S3 X C3 = .

Original entry on oeis.org

1, 0, 1, 2, 3, 15, 32, 126, 351, 1094, 3321, 9801, 29768, 88452, 266085, 797162, 2390391, 7175547, 21516800, 64573362, 193700403, 581130734, 1743421725, 5230147077, 15690706952, 47071500840, 141215033961, 423644304722, 1270932117003, 3812799539655
Offset: 0

Views

Author

Sean A. Irvine, Nov 16 2024

Keywords

Comments

Also called: D3 X C3. Gap identifier 18, 3.

Crossrefs

Cf. A095364 (D9), A378031 (C6 X C3), A378110 (S3:C3), A001045 (S3).

Formula

G.f.: (3*x^8-3*x^6-16*x^5+6*x^4+7*x^3-2*x^2-3*x+1) / ((x-1) * (3*x-1) * (x^2+x+1) * (3*x^2+3*x+1) * (3*x^2-3*x+1)).

A378110 Cogrowth sequence of the 18-element group S3:C3 = .

Original entry on oeis.org

1, 0, 1, 2, 5, 10, 53, 98, 397, 1058, 3341, 9658, 30053, 87386, 267877, 793682, 2397437, 7162066, 21552125, 64506026, 193839445, 580889738, 1743836117, 5229312706, 15692323949, 47067796610, 141222563821, 423628907162, 1270962692165, 3812740639930
Offset: 0

Views

Author

Sean A. Irvine, Nov 16 2024

Keywords

Comments

Also called: C3^2:C2. Gap identifier 18, 4.

Crossrefs

Cf. A095364 (D9), A378031 (C6 X C3), A378109 (S3 X C3), A001045 (S3).

Formula

G.f.: (6*x^5-4*x^4-8*x^3-5*x^2+1) / ((x-1) * (3*x-1) * (2*x+1) * (3*x^2+2*x+1)).
Showing 1-6 of 6 results.