cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072270 A partial product representation of A006131 and A072265.

Original entry on oeis.org

1, 1, 13, 9, 101, 5, 701, 49, 361, 29, 31021, 33, 204101, 181, 1021, 1889, 8799541, 233, 57746701, 1361, 41581, 7589, 2486401661, 1633, 161532401, 49661, 22810681, 58241, 702418373381, 2245, 4608956945501, 3437249, 74991181, 2135149, 2802699901, 75921, 1302034904649701, 14007941, 3219888061, 3019201
Offset: 1

Views

Author

Miklos Kristof, Jul 09 2002

Keywords

Comments

Define f(n) = A006131(n-1) and L(n) = 4*f(n-1)+f(n+1), which implies L(n) = A072265(n), n>1.
For even n, f(n) = product_{d|n} a(d) and for odd n, f(n) = product_{d|n} a(2d).
Taking logarithms defines the sequence a(.) via a Mobius transformation (see A072183).
Writing f(n) and L(n) in terms of Binet formulas leads to a representation as cyclotomic polynomials.

Examples

			f(12)=a(1)*a(2)*a(3)*a(4)*a(6)*a(12) = 1*1*13*9*5*33 = 19305 for even n=12.
f(9)=a(2)*a(6)*a(18)= 1*5*233 = 1165 for odd n=9.
L(6)=a(4)*a(12) = 9*33 = 297 = 4*f(5)+f(7) = 4*29+181 for even n=6.
L(15)=a(1)*a(3)*a(5)*a(15) = 1*13*101*1021 = 1340573 for odd n=15.
		

Crossrefs

Programs

  • Maple
    A072270 := proc(n) if n <=2 then 1; else h := (1+sqrt(17))/2 ; cy := numtheory[cyclotomic](n,x) ; g := degree(cy) ; (h-1)^g*subs(x=h^2/4,cy) ; expand(%) ; end if; end proc: # R. J. Mathar, Nov 17 2010

Formula

Let h=(1+sqrt(17))/2, Phi(n, x) = n-th cyclotomic polynomial, so x^n-1= product_{d|n} Phi(d, x), and let g(d) be the order of Phi(d, x). Then a(n)=(h-1)^g(n)*Phi(n, h^2/4), n>2.
a(p) = L(p) for odd prime p.
a(2p) = f(p) for odd prime p.
a(2^k+1) = L(2^k).
a(3*2^k = L(2^k)-4^k.
L(n) = product_{d|n} a(d) for odd n.
L(n*2^k) = product_{d|n} a(d*2^(k+1)) for k>0 and odd n.

Extensions

Divided argument of Phi by 4; moved comments to formula section - R. J. Mathar, Nov 17 2010