A072270 A partial product representation of A006131 and A072265.
1, 1, 13, 9, 101, 5, 701, 49, 361, 29, 31021, 33, 204101, 181, 1021, 1889, 8799541, 233, 57746701, 1361, 41581, 7589, 2486401661, 1633, 161532401, 49661, 22810681, 58241, 702418373381, 2245, 4608956945501, 3437249, 74991181, 2135149, 2802699901, 75921, 1302034904649701, 14007941, 3219888061, 3019201
Offset: 1
Keywords
Examples
f(12)=a(1)*a(2)*a(3)*a(4)*a(6)*a(12) = 1*1*13*9*5*33 = 19305 for even n=12. f(9)=a(2)*a(6)*a(18)= 1*5*233 = 1165 for odd n=9. L(6)=a(4)*a(12) = 9*33 = 297 = 4*f(5)+f(7) = 4*29+181 for even n=6. L(15)=a(1)*a(3)*a(5)*a(15) = 1*13*101*1021 = 1340573 for odd n=15.
Programs
-
Maple
A072270 := proc(n) if n <=2 then 1; else h := (1+sqrt(17))/2 ; cy := numtheory[cyclotomic](n,x) ; g := degree(cy) ; (h-1)^g*subs(x=h^2/4,cy) ; expand(%) ; end if; end proc: # R. J. Mathar, Nov 17 2010
Formula
Let h=(1+sqrt(17))/2, Phi(n, x) = n-th cyclotomic polynomial, so x^n-1= product_{d|n} Phi(d, x), and let g(d) be the order of Phi(d, x). Then a(n)=(h-1)^g(n)*Phi(n, h^2/4), n>2.
a(p) = L(p) for odd prime p.
a(2p) = f(p) for odd prime p.
a(2^k+1) = L(2^k).
a(3*2^k = L(2^k)-4^k.
L(n) = product_{d|n} a(d) for odd n.
L(n*2^k) = product_{d|n} a(d*2^(k+1)) for k>0 and odd n.
Extensions
Divided argument of Phi by 4; moved comments to formula section - R. J. Mathar, Nov 17 2010
Comments