cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A127607 Sequence arising from the factorization of F(n)= A083099(n) and L(n)= A127226(n).

Original entry on oeis.org

2, 1, 22, 16, 316, 10, 4264, 184, 2584, 124, 756064, 148, 10050496, 1624, 19216, 31264, 1775616256, 2152, 23600633344, 25936, 3343936, 285856, 4169384372224, 29968, 175371467776, 3798976, 12957013504, 4580416
Offset: 1

Views

Author

Miklos Kristof, Apr 03 2007

Keywords

Examples

			F(12)=a(1)*a(2)*a(3)*a(4)*a(6)*a(12)=2*1*22*16*10*148=1041920
F(9)=a(2)*a(6)*a(18)= 1*10*2152=21520
L(12)=a(8)*a(24)=184*29968=5514112
L(21)=a(1)*a(3)*a(7)*a(21)=2*22*4264*3343936=627375896576
		

Crossrefs

Programs

  • Maple
    with(numtheory): a[1]:=2:a[2]:=1:for n from 3 to 60 do a[n]:=round(evalf((sqrt(7)-1)^degree(cyclotomic(n, x), x) *cyclotomic(n, (4+sqrt(7))/3), 30)) od: seq(a[n], n=1..60);

Formula

a(n)= (sqrt(7)-1)^degree(cyclotomic(n,x),x)*cyclotomic(n,(4+sqrt(7)/3) L(n)=6*F(n-1)+F(n+1) F(2n)=Product(d|2n) a(d), F(2n+1)=Product(d|2n+1) a(2d). L(2n+1)=Product(d|2n+1, a(d)), for k>0: L(2^k*(2n+1))=Product(d|2n+1, a(2^(k+1)*d)). for odd prime p, a(p)=L(p)/2, a(2p)=f(p) a(1)=2, a(2)=1; a(2^(k+1))=L(2^k);

A072271 A partial product representation of f(n) = A015523(n) and L(n) = A072263(n).

Original entry on oeis.org

3, 1, 24, 19, 431, 14, 7589, 311, 5559, 241, 2345179, 286, 41223001, 4229, 70051, 95471, 12736968311, 5309, 223887209309, 88321, 21607111, 1306469, 69176042380099, 94846, 2821250547551, 22964761, 160204320879, 27289081, 375703599163598591, 119641
Offset: 1

Views

Author

Miklos Kristof, Jul 09 2002

Keywords

Comments

For even n, f(n) = Product_{d|n} a(d); for odd n, f(n) = Product_{d|n} a(2d).
For odd prime p, a(p) = L(p)/3, where L(n) = 5*f(n-1) + f(n+1).
a(1)=3, a(2)=1.
a(2p) = f(p) for odd primes p.
a(2^(k+1)) = L(2^k).
a(3*2^k) = L(2^k) - 5^k.
For odd n, L(n) = Product_{d|n} a(d).
For k > 0 and odd n, L(n*2^k) = Product_{d|n} a(d*2^(k+1)).

Examples

			f(12) = a(1)*a(2)*a(3)*a(4)*a(6)*a(12) = 3*1*24*19*14*286 = 5477472 for even n;
f(7) = a(2)*a(14) = 1*4229 = 4229 for odd n.
L(6) = a(4)*a(12) = 19*286 = 5434 = 5*f(5) + f(7) = 5*241 + 4229 for even n;
L(15) = a(1)*a(3)*a(5)*a(15) = 3*24*431*70051 = 2173822632 for odd n.
		

Crossrefs

Formula

a(n) = (h-3)^g(n) * K(n, h^2/5) for n > 2 where h = (3+sqrt(29))/2, Phi(n, x) = n-th cyclotomic polynomial and g(n) is the order of Phi(n, x).

Extensions

More terms and entry revised by Sean A. Irvine, Sep 19 2024
Showing 1-2 of 2 results.