cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072279 Dimension of n-th graded section of a certain Lie algebra.

Original entry on oeis.org

1, 4, 6, 16, 45, 144, 440, 1440, 4680, 15600, 52344, 177840, 608160, 2095920, 7262640, 25300032, 88517520, 310927680, 1095923400, 3874804560, 13737892896, 48829153920, 173949483240, 620963048160, 2220904271040, 7956987570576, 28553731537320, 102617166646800
Offset: 0

Views

Author

N. J. A. Sloane, Jul 15 2002

Keywords

Comments

Dimensions of Lie algebra associated to Yang-Lee algebra in the A. Connes and M. Dubois-Violette paper. - Roger L. Bagula, May 25 2007

Crossrefs

Inverse EULER transform of A072335 (with its initial 1 omitted).
Cf. A072337.

Programs

  • Maple
    with(numtheory): f:= proc(n) option remember; `if`(n<1, `if`(n=0,1,0), 4*(f(n-1)-f(n-3)) +f(n-4)) end: c:= proc(n) option remember; local j; n*f(n) -add(c(j)*f(n-j), j=1..n-1) end: a:= proc(n) option remember; local d; `if`(n=0,1, add(mobius(n/d)*c(d), d=divisors(n))/n) end: seq(a(n), n=0..27); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    f[n_] := f[n] = If[n < 1, If[n == 0, 1, 0],  f[n-4] + 4*(f[n-1] - f[n-3])]; c[n_] := c[n] = n*f[n] - Sum[c[j]*f[n-j],  {j, 1, n-1}]; a[n_] := a[n] = If[n == 0, 1,  Sum[c[d]*MoebiusMu[n/d],  {d, Divisors[n]}]/n]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Mar 14 2014, after Alois P. Heinz *)

Formula

Product_{n=1..inf} 1/(1-x^n)^a(n) = 1/((1-x^2)*(1-4*x+x^2)).
a(n) = (1/n) * Sum_{k|n} moebius(n/k) (t1^k + t2^k), where t1, t2 are the roots of x^2-4x+1.
a(n) ~ (2+sqrt(3))^n / n. - Vaclav Kotesovec, Sep 11 2014

Extensions

Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar