cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072285 Numerators of inverse unimodal analog of binomial coefficients: binomial(n,m) = Sum_{k=0..n-m} a(2*k+m-1, 2*k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 15, 2, 1, 1, 35, 3, 5, 1, 1, 315, 4, 35, 3, 1, 1, 693, 5, 105, 6, 7, 1, 1, 3003, 6, 1155, 10, 63, 4, 1, 1, 6435, 7, 3003, 15, 231, 10, 9, 1, 1, 109395, 8, 15015, 21, 3003, 20, 99, 5, 1, 1, 230945, 9, 36465, 28, 9009, 35, 429, 15, 11, 1
Offset: 0

Views

Author

Michele Dondi (bik.mido(AT)tiscalinet.it), Jul 11 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_, m_]:= Binomial[n -m/2 +1, n-m+1] - Binomial[n -m/2, n-m+1]; Flatten[Table[Numerator[a[n, m]], {n, 0, 11}, {m, 0, n}]]
  • PARI
    a(n,m) = binomial(n-m/2, n-m);
    for(n=0,10, for(m=0,n, print1(numerator(a(n,m)), ", "))) \\ G. C. Greubel, Aug 26 2019
    
  • Sage
    [[numerator( binomial(n-m/2, n-m) ) for m in (0..n)] for n in (0..11)] # G. C. Greubel, Aug 26 2019

Formula

a(n, m) = binomial(n-m/2+1, n-m+1) - binomial(n-m/2, n-m+1).