A072285 Numerators of inverse unimodal analog of binomial coefficients: binomial(n,m) = Sum_{k=0..n-m} a(2*k+m-1, 2*k).
1, 1, 1, 1, 3, 1, 1, 15, 2, 1, 1, 35, 3, 5, 1, 1, 315, 4, 35, 3, 1, 1, 693, 5, 105, 6, 7, 1, 1, 3003, 6, 1155, 10, 63, 4, 1, 1, 6435, 7, 3003, 15, 231, 10, 9, 1, 1, 109395, 8, 15015, 21, 3003, 20, 99, 5, 1, 1, 230945, 9, 36465, 28, 9009, 35, 429, 15, 11, 1
Offset: 0
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Mathematica
a[n_, m_]:= Binomial[n -m/2 +1, n-m+1] - Binomial[n -m/2, n-m+1]; Flatten[Table[Numerator[a[n, m]], {n, 0, 11}, {m, 0, n}]]
-
PARI
a(n,m) = binomial(n-m/2, n-m); for(n=0,10, for(m=0,n, print1(numerator(a(n,m)), ", "))) \\ G. C. Greubel, Aug 26 2019
-
Sage
[[numerator( binomial(n-m/2, n-m) ) for m in (0..n)] for n in (0..11)] # G. C. Greubel, Aug 26 2019
Formula
a(n, m) = binomial(n-m/2+1, n-m+1) - binomial(n-m/2, n-m+1).