A072296 Least number starting a chain of exactly n consecutive even integers that do not have cototient-inverses.
10, 50, 532, 2314, 4628, 22578, 115024, 221960, 478302, 3340304, 22527850, 117335136, 1118736102, 1564578508, 6121287812, 7515991946
Offset: 1
Examples
Neither 50 nor 52 have cototient-inverses and since 50 is the first of the two and the least number with this property, a(2) = 50.
Programs
-
Mathematica
a = Table[0, {5*10^7}]; Do[b = n - EulerPhi[n]; If[ b < 5*10^7 + 1, a[[b/2]]++ ], {n, 2, 615437100}] (* used to find a(7) *) Do[ If[ a[[n]] == a[[n + 1]] == a[[n + 2]] == a[[n + 3]] == a[[n + 4]] == a[[n + 5]] == a[[n + 6]] == 0, Print[n]], {n, 1, 10^6}]
Extensions
a(12)-a(14) from Donovan Johnson, Jun 23 2010
a(15)-a(16) from Donovan Johnson, Jun 03 2013
Comments