A072335 Expansion of 1/((1-x^2)*(1-4*x+x^2)).
1, 4, 16, 60, 225, 840, 3136, 11704, 43681, 163020, 608400, 2270580, 8473921, 31625104, 118026496, 440480880, 1643897025, 6135107220, 22896531856, 85451020204, 318907548961, 1190179175640, 4441809153600, 16577057438760, 61866420601441, 230888624967004
Offset: 0
Links
- M. R. Bremner, Free associative algebras, noncommutative Grobner bases, and universal associative envelopes for nonassociative structures, arXiv preprint arXiv:1303.0920, 2013
- N. J. A. Sloane, Transforms
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,0,-4,1).
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[1/((1-x^2)*(1-4x+x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{4,0,-4,1},{1,4,16,60},30] (* Harvey P. Dale, Aug 22 2015 *)
-
PARI
Vec(1/((1-x^2)*(1-4*x+x^2))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
Formula
a(n) = (1/12)*((7-4*sqrt(3))*(2-sqrt(3))^n+(7+4*sqrt(3))*(2+sqrt(3))^n-3+(-1)^n). Recurrence: a(n) = 4*a(n-1)-4*a(n-3)+a(n-4).
a(n)=sum{k=0..floor(n/2), U(n-2k, 2)} - Paul Barry, Nov 15 2003
The g.f. can also be written as 1/(1-4*x+4*x^3-x^4), which relates this sequence to the family of sequences described in A225682.