A258730 T(n,k)=Number of length n+k 0..3 arrays with at most one downstep in every k consecutive neighbor pairs.
16, 60, 64, 190, 225, 256, 512, 608, 840, 1024, 1212, 1408, 2028, 3136, 4096, 2592, 2936, 4184, 6552, 11704, 16384, 5115, 5664, 7834, 12549, 20955, 43681, 65536, 9460, 10280, 13720, 21860, 35540, 68120, 163020, 262144, 16588, 17754, 22866, 35704
Offset: 1
Examples
Some solutions for n=4 k=4 ..1....1....0....0....3....0....1....3....2....0....2....3....0....3....2....0 ..0....2....3....3....1....1....2....3....2....1....2....2....3....3....0....2 ..2....0....3....1....1....1....3....3....0....1....3....3....0....0....2....2 ..3....2....3....1....2....1....1....0....0....1....0....3....1....2....3....3 ..3....3....3....1....2....1....1....0....1....1....0....3....3....3....3....0 ..0....3....3....2....3....3....1....1....1....0....3....0....3....3....2....0 ..0....3....1....3....0....0....2....3....2....0....3....2....1....0....2....2 ..3....2....2....1....2....1....0....1....0....0....2....2....1....0....2....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Formula
Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: a(n) = 4*a(n-1) -4*a(n-3) +a(n-4)
k=3: [order 8]
k=4: [order 12]
k=5: [order 16]
k=6: [order 19]
k=7: [order 22]
Empirical for row n:
n=1: [polynomial of degree 7]
n=2: [polynomial of degree 7]
n=3: [polynomial of degree 7] for n>1
n=4: [polynomial of degree 7] for n>2
n=5: [polynomial of degree 7] for n>3
n=6: [polynomial of degree 7] for n>4
n=7: [polynomial of degree 7] for n>5
Comments