A200781
G.f.: 1/(1-5*x+10*x^3-5*x^4).
Original entry on oeis.org
1, 5, 25, 115, 530, 2425, 11100, 50775, 232275, 1062500, 4860250, 22232375, 101698250, 465201250, 2127983750, 9734098125, 44526969375, 203681015625, 931704015625, 4261920875000, 19495429065625, 89178510250000, 407931862578125, 1866014626609375, 8535765175875000, 39045399804843750, 178606512071015625, 817004981729375000
Offset: 0
Some solutions for n=5:
..1....3....4....0....1....0....4....0....2....1....4....1....2....2....4....4
..3....4....4....2....1....0....3....3....1....4....1....1....4....4....3....3
..3....1....0....2....0....2....0....3....3....0....4....3....0....1....4....4
..2....0....2....4....4....0....3....2....0....0....3....2....0....2....1....3
..4....4....2....2....0....3....3....2....1....0....4....1....3....1....0....2
- R. H. Hardin and N. J. A. Sloane, Table of n, a(n) for n = 0..249 [The first 210 terms were computed by R. H. Hardin]
- A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14. See Th. 3.13.
- Index entries for linear recurrences with constant coefficients, signature (5,0,-10,5).
The g.f. corresponds to row 5 of triangle
A225682.
A200782
Expansion of 1 / (1 - 6*x + 20*x^3 - 15*x^4 + x^6).
Original entry on oeis.org
1, 6, 36, 196, 1071, 5796, 31395, 169884, 919413, 4975322, 26924106, 145698840, 788446400, 4266656226, 23088902733, 124944995676, 676136621430, 3658895818470, 19800020091895, 107147296401684, 579824822459421, 3137707025200000
Offset: 0
a(n) is also the number of words of length n over an alphabet of size 6 which do not contain any strictly increasing factor of length 3. Some solutions for n=5:
..5....5....0....3....2....4....3....3....3....3....0....3....3....1....0....1
..1....5....0....0....4....5....1....1....3....5....1....0....2....0....3....4
..3....5....1....0....4....3....1....4....5....0....1....5....1....0....0....3
..0....0....0....4....1....1....1....4....2....4....1....1....2....5....4....1
..1....4....2....0....0....0....1....3....1....4....3....2....2....2....4....5
- R. H. Hardin and N. J. Sloane, Table of n, a(n) for n = 0..239 [The first 210 terms were computed by R. H. Hardin]
- M. R. Bremner, Free associative algebras, noncommutative Grobner bases, and universal associative envelopes for nonassociative structures, arXiv:1303.0920 [math.RA], 2013
- A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14. See Th. 3.13.
- Index entries for linear recurrences with constant coefficients, signature (6,0,-20,15,0,-1).
G.f. corresponds to row 6 of
A225682.
-
CoefficientList[Series[1 / (1 - 6*x + 20*x^3 - 15*x^4 + x^6), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 26 2015 *)
LinearRecurrence[{6,0,-20,15,0,-1},{1,6,36,196,1071,5796},30] (* Harvey P. Dale, Jul 28 2019 *)
-
Vec(1/(1-6*x+20*x^3-15*x^4+x^6) + O(x^30)) \\ Michel Marcus, Jan 26 2015
A200783
G.f.: 1/(1-7*x+35*x^3-35*x^4+7*x^6-x^7).
Original entry on oeis.org
1, 7, 49, 308, 1946, 12152, 75992, 474566, 2964416, 18514405, 115637431, 722234149, 4510869636, 28173535572, 175963587528, 1099016234232, 6864129384252, 42871313869692, 267761500599901, 1672358840069239, 10445056851917149, 65236724277810632, 407449213173792062, 2544806826734163992, 15894107968042546424, 99269879914558590146
Offset: 0
Some solutions for n=5
..6....2....6....3....4....4....6....6....5....3....2....4....5....0....5....5
..4....5....0....4....1....6....4....5....1....1....2....6....6....6....3....6
..4....4....0....4....5....3....5....5....5....1....5....3....3....6....4....2
..3....6....2....5....5....2....2....4....5....5....3....3....2....1....4....5
..4....5....0....3....1....0....4....3....5....5....2....1....0....0....5....3
- R. H. Hardin and N. J. Sloane, Table of n, a(n) for n = 0..249 [The first 210 terms were computed by R. H. Hardin]
- A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14. See Th. 3.13.
- Index entries for linear recurrences with constant coefficients, signature (7, 0, -35, 35, 0, -7, 1).
G.f. corresponds to row 7 of
A225682.
-
CoefficientList[Series[1/(1-7x+35x^3-35x^4+7x^6-x^7),{x,0,30}],x] (* or *) LinearRecurrence[{7,0,-35,35,0,-7,1},{1,7,49,308,1946,12152,75992},30] (* Harvey P. Dale, Jul 23 2014 *)
A200784
Number of 0..7 arrays x(0..n+1) of n+2 elements without any two consecutive increases.
Original entry on oeis.org
456, 3270, 23136, 164004, 1160616, 8216484, 58154912, 411637168, 2913595712, 20622837480, 145970677056, 1033197881712, 7313093248992, 51762926098992, 366383987227392, 2593308396911680, 18355737644921600, 129924040926296800
Offset: 1
Some solutions for n=3
..7....5....7....4....5....2....3....7....5....5....5....6....1....5....4....4
..0....5....4....2....3....2....1....4....0....5....7....4....0....5....4....4
..0....5....4....1....6....6....3....5....0....4....6....6....6....7....4....4
..0....1....7....1....5....5....0....0....6....1....6....3....0....0....4....7
..1....4....0....6....5....2....6....5....3....4....2....4....1....2....4....3
A200786
Number of 0..n arrays x(0..3) of 4 elements without any two consecutive increases.
Original entry on oeis.org
16, 75, 225, 530, 1071, 1946, 3270, 5175, 7810, 11341, 15951, 21840, 29225, 38340, 49436, 62781, 78660, 97375, 119245, 144606, 173811, 207230, 245250, 288275, 336726, 391041, 451675, 519100, 593805, 676296, 767096, 866745, 975800, 1094835
Offset: 1
Some solutions for n=3
..0....1....0....3....2....3....3....2....3....1....0....1....0....3....1....0
..0....3....3....1....2....3....2....0....3....3....3....2....0....2....1....2
..3....2....3....1....1....0....2....3....3....1....1....1....2....1....3....1
..1....2....1....2....3....0....1....0....3....2....2....2....2....2....1....1
A200787
Number of 0..n arrays x(0..4) of 5 elements without any two consecutive increases.
Original entry on oeis.org
32, 216, 840, 2425, 5796, 12152, 23136, 40905, 68200, 108416, 165672, 244881, 351820, 493200, 676736, 911217, 1206576, 1573960, 2025800, 2575881, 3239412, 4033096, 4975200, 6085625, 7385976, 8899632, 10651816, 12669665, 14982300
Offset: 1
Some solutions for n=3
..2....1....3....2....2....3....1....3....1....1....2....1....0....1....2....0
..0....0....3....3....1....2....3....1....3....2....0....0....3....3....2....0
..0....1....1....3....3....1....3....1....0....0....0....2....3....2....3....0
..3....1....1....1....1....0....3....2....3....3....3....2....1....1....0....0
..0....1....1....0....2....3....3....1....1....0....1....0....3....1....2....3
A200788
Number of 0..n arrays x(0..5) of 6 elements without any two consecutive increases.
Original entry on oeis.org
64, 622, 3136, 11100, 31395, 75992, 164004, 324087, 597190, 1039654, 1726660, 2756026, 4252353, 6371520, 9305528, 13287693, 18598188, 25569934, 34594840, 46130392, 60706591, 78933240, 101507580, 129222275, 162973746, 203770854
Offset: 1
Some solutions for n=3
..2....3....3....2....3....2....1....1....3....3....1....1....2....3....2....1
..3....2....1....3....0....0....3....0....0....3....3....1....2....3....2....1
..0....3....3....3....0....1....3....0....1....0....3....3....1....0....2....1
..3....3....2....3....3....1....0....2....1....2....0....0....0....2....2....2
..3....1....2....3....0....1....1....1....3....0....2....0....3....2....1....2
..3....3....1....2....0....2....1....2....3....0....2....2....1....2....2....3
A200789
Number of 0..n arrays x(0..6) of 7 elements without any two consecutive increases.
Original entry on oeis.org
128, 1791, 11704, 50775, 169884, 474566, 1160616, 2562633, 5217520, 9944957, 17946864, 30927871, 51238812, 82045260, 127523120, 193083297, 285627456, 413836891, 588496520, 822856023, 1133030140, 1538440146, 2062298520
Offset: 1
Some solutions for n=3
..1....0....2....0....0....3....0....1....0....2....2....2....0....3....1....0
..2....2....3....0....2....3....3....1....3....2....0....2....2....1....3....3
..0....0....3....1....2....2....0....0....2....0....0....2....0....1....3....2
..1....1....0....1....3....1....1....0....3....2....3....0....0....0....2....1
..0....1....3....0....1....3....0....0....1....1....2....3....2....3....0....0
..1....3....0....0....1....3....0....1....1....3....3....2....2....0....2....0
..1....1....0....2....1....1....0....0....3....0....0....2....0....2....1....3
A200790
Number of 0..n arrays x(0..7) of 8 elements without any two consecutive increases.
Original entry on oeis.org
256, 5157, 43681, 232275, 919413, 2964416, 8216484, 20273247, 45611500, 95196145, 186686721, 347374261, 617994573, 1057577400, 1749504272, 2808961221, 4391985888, 6706321909, 10024306825, 14698033119, 21177035341, 30028769640
Offset: 1
Some solutions for n=3
..3....1....2....2....0....2....1....2....2....3....0....0....0....3....3....1
..0....1....0....2....2....3....3....2....1....3....0....1....1....0....0....3
..0....3....3....1....0....1....3....1....2....0....3....0....1....0....3....1
..1....3....2....2....3....3....2....2....0....2....0....0....1....3....3....2
..0....1....3....2....1....3....3....1....0....1....2....3....3....1....0....0
..3....0....2....2....3....0....3....3....3....3....1....2....0....2....0....3
..0....1....1....2....0....0....2....0....1....0....3....1....2....1....3....1
..3....0....3....3....3....1....3....0....0....3....1....0....2....3....1....0
A200791
Number of 0..n arrays x(0..8) of 9 elements without any two consecutive increases.
Original entry on oeis.org
512, 14849, 163020, 1062500, 4975322, 18514405, 58154912, 160338680, 398601390, 910893148, 1941103528, 3899741885, 7449762880, 13624665670, 23987233104, 40838614531, 67488892468, 108601809395, 170627966340, 262342539690
Offset: 1
Some solutions for n=3
..0....0....0....0....0....1....1....1....3....0....1....0....1....1....3....1
..0....0....0....3....3....3....3....3....0....3....3....3....0....1....1....3
..3....0....2....0....1....0....0....1....0....2....3....3....2....2....0....1
..2....1....0....3....0....3....0....3....1....2....1....3....1....2....1....0
..2....1....3....3....0....0....2....3....0....3....1....1....0....3....1....0
..3....3....2....0....3....0....0....1....2....3....3....0....3....2....3....2
..2....2....2....3....2....2....0....1....1....1....2....1....1....0....1....1
..1....3....3....2....3....0....0....3....1....0....2....1....0....1....0....0
..3....0....1....2....3....1....3....2....3....2....2....0....0....0....3....2
Showing 1-10 of 10 results.
Comments