cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A076264 Number of ternary (0,1,2) sequences without a consecutive '012'.

Original entry on oeis.org

1, 3, 9, 26, 75, 216, 622, 1791, 5157, 14849, 42756, 123111, 354484, 1020696, 2938977, 8462447, 24366645, 70160958, 202020427, 581694636, 1674922950, 4822748423, 13886550633, 39984728949, 115131438424, 331507764639
Offset: 0

Views

Author

John L. Drost, Nov 05 2002

Keywords

Comments

A transform of A000244 under the mapping g(x)->(1/(1+x^3))g(x/(1+x^3)). - Paul Barry, Oct 20 2004
b(n) := (-1)^n*a(n) appears in the formula for the nonpositive powers of rho(9) := 2*cos(Pi/9), when written in the power basis of the algebraic number field Q(rho(9)) of degree 3. See A187360 for the minimal polynomial C(9, x) of rho(9), and a link to the Q(2*cos(pi/n)) paper. 1/rho(9) = -3*1 + 0*rho(9) + 1*rho(9)^2 (see A230079, row n=5). 1/rho(9)^n = b(n)*1 + b(n-2)*rho(9) + b(n-1)*rho(9)^2, n >= 0, with b(-1) = 0 = b(-2). - Wolfdieter Lang, Nov 04 2013
The limit b(n+1)/b(n) = -a(n+1)/a(n) for n -> infinity is -tau(9) := -(1 + rho(9)) = 1/(2*cos(Pi*5/9)), approximately -2.445622407. tau(9) is known to be the length ratio (longest diagonal)/side in the regular 9-gon. This limit follows from the b(n)-recurrence and the solutions of X^3 + 3*X^2 - 1 = 0, which are given by the inverse of the known solutions of the minimal polynomial C(9, x) of rho(9) (see A187360). The other two X solutions are 1/rho(9) = -3 + rho(9)^2, approximately 0.5320888860 and 1/(2*cos(Pi*7/9)) = 1 + rho(9) - rho(9)^2, approximately -0.6527036445, and they are therefore irrelevant for this sequence. - Wolfdieter Lang, Nov 08 2013
a(n) is also the number of ternary (0,1,2) sequences of length n without a consecutive '110' because the patterns A=012 and B=110 have the same autocorrelation, i.e., AA=100=BB, in the sense of Guibas and Odlysko (1981). (A cyclic version of this sequence can be found in sequence A274018.) - Petros Hadjicostas, Sep 12 2017

Examples

			1/rho(9)^3 = -26*1 - 3*rho(9) + 9*rho(9)^2, (approximately 0.15064426) with rho(9) given in the Nov 04 2013 comment above. - _Wolfdieter Lang_, Nov 04 2013
G.f. = 1 + 3*x + 9*x^2 + 26*x^3 + 75*x^4 + 216*x^5 + 622*x^6 + 1791*x^7 + ...
		

References

  • A. Tucker, Applied Combinatorics, 4th ed. p. 277

Crossrefs

The g.f. corresponds to row 3 of triangle A225682.

Programs

  • GAP
    List([0..25],n->Sum([0..Int(n/3)],k->Binomial(n-2*k,k)*(-1)^k*3^(n-3*k))); # Muniru A Asiru, Feb 20 2018
  • Mathematica
    LinearRecurrence[{3,0,-1},{1,3,9},30] (* Harvey P. Dale, Feb 28 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / (1 - 3*x + x^3) + x * O(x^n), n))};
    

Formula

a(n) is asymptotic to g*c^n where c = cos(Pi/18)/cos(7*Pi/18) and g is the largest real root of 81*x^3 - 81*x^2 - 9*x + 1 = 0. - Benoit Cloitre, Nov 06 2002
G.f.: 1/(1 - 3x + x^3).
a(n) = 3*a(n-1) - a(n-3), n > 0.
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2k, k)(-1)^k*3^(n-3k). - Paul Barry, Oct 20 2004
a(n) = middle term in M^(n+1) * [1 0 0], where M = the 3 X 3 matrix [2 1 1 / 1 1 0 / 1 0 0]. Right term = A052536(n), left term = A052536(n+1). - Gary W. Adamson, Sep 05 2005

A072335 Expansion of 1/((1-x^2)*(1-4*x+x^2)).

Original entry on oeis.org

1, 4, 16, 60, 225, 840, 3136, 11704, 43681, 163020, 608400, 2270580, 8473921, 31625104, 118026496, 440480880, 1643897025, 6135107220, 22896531856, 85451020204, 318907548961, 1190179175640, 4441809153600, 16577057438760, 61866420601441, 230888624967004
Offset: 0

Views

Author

N. J. A. Sloane, Jul 15 2002

Keywords

Crossrefs

EULER transform of A072279 (with its initial 1 omitted).
A001353(n)^2 is a bisection of a(n).
Cf. A225682.

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x^2)*(1-4x+x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{4,0,-4,1},{1,4,16,60},30] (* Harvey P. Dale, Aug 22 2015 *)
  • PARI
    Vec(1/((1-x^2)*(1-4*x+x^2))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(n) = (1/12)*((7-4*sqrt(3))*(2-sqrt(3))^n+(7+4*sqrt(3))*(2+sqrt(3))^n-3+(-1)^n). Recurrence: a(n) = 4*a(n-1)-4*a(n-3)+a(n-4).
a(n)=sum{k=0..floor(n/2), U(n-2k, 2)} - Paul Barry, Nov 15 2003
The g.f. can also be written as 1/(1-4*x+4*x^3-x^4), which relates this sequence to the family of sequences described in A225682.

A200781 G.f.: 1/(1-5*x+10*x^3-5*x^4).

Original entry on oeis.org

1, 5, 25, 115, 530, 2425, 11100, 50775, 232275, 1062500, 4860250, 22232375, 101698250, 465201250, 2127983750, 9734098125, 44526969375, 203681015625, 931704015625, 4261920875000, 19495429065625, 89178510250000, 407931862578125, 1866014626609375, 8535765175875000, 39045399804843750, 178606512071015625, 817004981729375000
Offset: 0

Views

Author

R. H. Hardin, Nov 22 2011

Keywords

Comments

Number of words of length n over an alphabet of size 5 which do not contain any strictly decreasing factor (consecutive subword) of length 3. For alphabets of size 2, 3, 4, 6 see A000079, A076264, A072335, A200782.
Equivalently, number of 0..4 arrays x(0..n-1) of n elements without any two consecutive increases.

Examples

			Some solutions for n=5:
..1....3....4....0....1....0....4....0....2....1....4....1....2....2....4....4
..3....4....4....2....1....0....3....3....1....4....1....1....4....4....3....3
..3....1....0....2....0....2....0....3....3....0....4....3....0....1....4....4
..2....0....2....4....4....0....3....2....0....0....3....2....0....2....1....3
..4....4....2....2....0....3....3....2....1....0....4....1....3....1....0....2
		

Crossrefs

The g.f. corresponds to row 5 of triangle A225682.
Column 4 of A200785.

Programs

  • PARI
    Vec(1/(1-5*x+10*x^3-5*x^4) + O(x^30)) \\ Jinyuan Wang, Mar 10 2020

Formula

a(n) = 5*a(n-1) - 10*a(n-3) + 5*a(n-4).

Extensions

Edited by N. J. A. Sloane, May 21 2013

A200782 Expansion of 1 / (1 - 6*x + 20*x^3 - 15*x^4 + x^6).

Original entry on oeis.org

1, 6, 36, 196, 1071, 5796, 31395, 169884, 919413, 4975322, 26924106, 145698840, 788446400, 4266656226, 23088902733, 124944995676, 676136621430, 3658895818470, 19800020091895, 107147296401684, 579824822459421, 3137707025200000
Offset: 0

Views

Author

R. H. Hardin, Nov 22 2011

Keywords

Comments

a(n) is the number of words of length n over an alphabet of size 6 which do not contain any strictly decreasing factor (consecutive subword) of length 3.
Equivalently, dimensions of homogeneous components of the universal associative envelope for a certain nonassociative triple system [Bremner].
This is the g.f. corresponding to row 6 of A225682.

Examples

			a(n) is also the number of words of length n over an alphabet of size 6 which do not contain any strictly increasing factor of length 3. Some solutions for n=5:
..5....5....0....3....2....4....3....3....3....3....0....3....3....1....0....1
..1....5....0....0....4....5....1....1....3....5....1....0....2....0....3....4
..3....5....1....0....4....3....1....4....5....0....1....5....1....0....0....3
..0....0....0....4....1....1....1....4....2....4....1....1....2....5....4....1
..1....4....2....0....0....0....1....3....1....4....3....2....2....2....4....5
		

Crossrefs

Column 5 of A200785.
G.f. corresponds to row 6 of A225682.

Programs

  • Mathematica
    CoefficientList[Series[1 / (1 - 6*x + 20*x^3 - 15*x^4 + x^6), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 26 2015 *)
    LinearRecurrence[{6,0,-20,15,0,-1},{1,6,36,196,1071,5796},30] (* Harvey P. Dale, Jul 28 2019 *)
  • PARI
    Vec(1/(1-6*x+20*x^3-15*x^4+x^6) + O(x^30)) \\ Michel Marcus, Jan 26 2015

Formula

G.f.: 1 / (1 - 6*x + 20*x^3 - 15*x^4 + x^6).
a(n) = 6*a(n-1) - 20*a(n-3) + 15*a(n-4) - a(n-6).

Extensions

Entry revised by N. J. A. Sloane, May 17 2013, merging this with A225381
Typo in name corrected by Michel Marcus, Jan 26 2015

A200783 G.f.: 1/(1-7*x+35*x^3-35*x^4+7*x^6-x^7).

Original entry on oeis.org

1, 7, 49, 308, 1946, 12152, 75992, 474566, 2964416, 18514405, 115637431, 722234149, 4510869636, 28173535572, 175963587528, 1099016234232, 6864129384252, 42871313869692, 267761500599901, 1672358840069239, 10445056851917149, 65236724277810632, 407449213173792062, 2544806826734163992, 15894107968042546424, 99269879914558590146
Offset: 0

Views

Author

R. H. Hardin Nov 22 2011

Keywords

Comments

Number of words of length n over an alphabet of size 7 which do not contain any strictly decreasing factor (consecutive subword) of length 3.
Number of 0..6 arrays x(0..n-1) of n elements without any two consecutive increases.

Examples

			Some solutions for n=5
..6....2....6....3....4....4....6....6....5....3....2....4....5....0....5....5
..4....5....0....4....1....6....4....5....1....1....2....6....6....6....3....6
..4....4....0....4....5....3....5....5....5....1....5....3....3....6....4....2
..3....6....2....5....5....2....2....4....5....5....3....3....2....1....4....5
..4....5....0....3....1....0....4....3....5....5....2....1....0....0....5....3
		

Crossrefs

Column 6 of A200785.
G.f. corresponds to row 7 of A225682.

Programs

  • Mathematica
    CoefficientList[Series[1/(1-7x+35x^3-35x^4+7x^6-x^7),{x,0,30}],x] (* or *) LinearRecurrence[{7,0,-35,35,0,-7,1},{1,7,49,308,1946,12152,75992},30] (* Harvey P. Dale, Jul 23 2014 *)

Formula

a(n) = 7*a(n-1) - 35*a(n-3) + 35*a(n-4) - 7*a(n-6) + a(n-7).

Extensions

Edited by N. J. A. Sloane, May 21 2013
Showing 1-5 of 5 results.