A076264
Number of ternary (0,1,2) sequences without a consecutive '012'.
Original entry on oeis.org
1, 3, 9, 26, 75, 216, 622, 1791, 5157, 14849, 42756, 123111, 354484, 1020696, 2938977, 8462447, 24366645, 70160958, 202020427, 581694636, 1674922950, 4822748423, 13886550633, 39984728949, 115131438424, 331507764639
Offset: 0
1/rho(9)^3 = -26*1 - 3*rho(9) + 9*rho(9)^2, (approximately 0.15064426) with rho(9) given in the Nov 04 2013 comment above. - _Wolfdieter Lang_, Nov 04 2013
G.f. = 1 + 3*x + 9*x^2 + 26*x^3 + 75*x^4 + 216*x^5 + 622*x^6 + 1791*x^7 + ...
- A. Tucker, Applied Combinatorics, 4th ed. p. 277
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Taras Goy and Mark Shattuck, Toeplitz-Hessenberg determinant formulas for the sequence F_n-1, Online J. Anal. Comb. (2025) Vol. 19, Paper 1, 1-26. See p. 12.
- Leo J. Guibas and Andrew M. Odlyzko, String overlaps, pattern matching, and nontransitive games, J. Combin. Theory Ser. A 30 (1981), 183-208. [Comment: The authors use generating functions in terms of z^{-1}. To get the g.f. of the sequence, as shown below in the FORMULA section, let x=z^{-1} and perform simple algebra. There are some minor typos in Theorem 2.1, p. 191, that can be easily corrected by looking at the proof. - _Petros Hadjicostas_, Sep 12 2017]
- Yun-Tak Oh, Hosho Katsura, Hyun-Yong Lee, and Jung Hoon Han, Proposal of a spin-one chain model with competing dimer and trimer interactions, arXiv:1709.01344 [cond-mat.str-el], 2017.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-1).
The g.f. corresponds to row 3 of triangle
A225682.
-
List([0..25],n->Sum([0..Int(n/3)],k->Binomial(n-2*k,k)*(-1)^k*3^(n-3*k))); # Muniru A Asiru, Feb 20 2018
-
LinearRecurrence[{3,0,-1},{1,3,9},30] (* Harvey P. Dale, Feb 28 2016 *)
-
{a(n) = if( n<0, 0, polcoeff( 1 / (1 - 3*x + x^3) + x * O(x^n), n))};
A072335
Expansion of 1/((1-x^2)*(1-4*x+x^2)).
Original entry on oeis.org
1, 4, 16, 60, 225, 840, 3136, 11704, 43681, 163020, 608400, 2270580, 8473921, 31625104, 118026496, 440480880, 1643897025, 6135107220, 22896531856, 85451020204, 318907548961, 1190179175640, 4441809153600, 16577057438760, 61866420601441, 230888624967004
Offset: 0
- M. R. Bremner, Free associative algebras, noncommutative Grobner bases, and universal associative envelopes for nonassociative structures, arXiv preprint arXiv:1303.0920, 2013
- N. J. A. Sloane, Transforms
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,0,-4,1).
EULER transform of
A072279 (with its initial 1 omitted).
A001353(n)^2 is a bisection of a(n).
-
CoefficientList[Series[1/((1-x^2)*(1-4x+x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{4,0,-4,1},{1,4,16,60},30] (* Harvey P. Dale, Aug 22 2015 *)
-
Vec(1/((1-x^2)*(1-4*x+x^2))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
A200781
G.f.: 1/(1-5*x+10*x^3-5*x^4).
Original entry on oeis.org
1, 5, 25, 115, 530, 2425, 11100, 50775, 232275, 1062500, 4860250, 22232375, 101698250, 465201250, 2127983750, 9734098125, 44526969375, 203681015625, 931704015625, 4261920875000, 19495429065625, 89178510250000, 407931862578125, 1866014626609375, 8535765175875000, 39045399804843750, 178606512071015625, 817004981729375000
Offset: 0
Some solutions for n=5:
..1....3....4....0....1....0....4....0....2....1....4....1....2....2....4....4
..3....4....4....2....1....0....3....3....1....4....1....1....4....4....3....3
..3....1....0....2....0....2....0....3....3....0....4....3....0....1....4....4
..2....0....2....4....4....0....3....2....0....0....3....2....0....2....1....3
..4....4....2....2....0....3....3....2....1....0....4....1....3....1....0....2
- R. H. Hardin and N. J. A. Sloane, Table of n, a(n) for n = 0..249 [The first 210 terms were computed by R. H. Hardin]
- A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14. See Th. 3.13.
- Index entries for linear recurrences with constant coefficients, signature (5,0,-10,5).
The g.f. corresponds to row 5 of triangle
A225682.
A200782
Expansion of 1 / (1 - 6*x + 20*x^3 - 15*x^4 + x^6).
Original entry on oeis.org
1, 6, 36, 196, 1071, 5796, 31395, 169884, 919413, 4975322, 26924106, 145698840, 788446400, 4266656226, 23088902733, 124944995676, 676136621430, 3658895818470, 19800020091895, 107147296401684, 579824822459421, 3137707025200000
Offset: 0
a(n) is also the number of words of length n over an alphabet of size 6 which do not contain any strictly increasing factor of length 3. Some solutions for n=5:
..5....5....0....3....2....4....3....3....3....3....0....3....3....1....0....1
..1....5....0....0....4....5....1....1....3....5....1....0....2....0....3....4
..3....5....1....0....4....3....1....4....5....0....1....5....1....0....0....3
..0....0....0....4....1....1....1....4....2....4....1....1....2....5....4....1
..1....4....2....0....0....0....1....3....1....4....3....2....2....2....4....5
- R. H. Hardin and N. J. Sloane, Table of n, a(n) for n = 0..239 [The first 210 terms were computed by R. H. Hardin]
- M. R. Bremner, Free associative algebras, noncommutative Grobner bases, and universal associative envelopes for nonassociative structures, arXiv:1303.0920 [math.RA], 2013
- A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14. See Th. 3.13.
- Index entries for linear recurrences with constant coefficients, signature (6,0,-20,15,0,-1).
G.f. corresponds to row 6 of
A225682.
-
CoefficientList[Series[1 / (1 - 6*x + 20*x^3 - 15*x^4 + x^6), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 26 2015 *)
LinearRecurrence[{6,0,-20,15,0,-1},{1,6,36,196,1071,5796},30] (* Harvey P. Dale, Jul 28 2019 *)
-
Vec(1/(1-6*x+20*x^3-15*x^4+x^6) + O(x^30)) \\ Michel Marcus, Jan 26 2015
A200783
G.f.: 1/(1-7*x+35*x^3-35*x^4+7*x^6-x^7).
Original entry on oeis.org
1, 7, 49, 308, 1946, 12152, 75992, 474566, 2964416, 18514405, 115637431, 722234149, 4510869636, 28173535572, 175963587528, 1099016234232, 6864129384252, 42871313869692, 267761500599901, 1672358840069239, 10445056851917149, 65236724277810632, 407449213173792062, 2544806826734163992, 15894107968042546424, 99269879914558590146
Offset: 0
Some solutions for n=5
..6....2....6....3....4....4....6....6....5....3....2....4....5....0....5....5
..4....5....0....4....1....6....4....5....1....1....2....6....6....6....3....6
..4....4....0....4....5....3....5....5....5....1....5....3....3....6....4....2
..3....6....2....5....5....2....2....4....5....5....3....3....2....1....4....5
..4....5....0....3....1....0....4....3....5....5....2....1....0....0....5....3
- R. H. Hardin and N. J. Sloane, Table of n, a(n) for n = 0..249 [The first 210 terms were computed by R. H. Hardin]
- A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14. See Th. 3.13.
- Index entries for linear recurrences with constant coefficients, signature (7, 0, -35, 35, 0, -7, 1).
G.f. corresponds to row 7 of
A225682.
-
CoefficientList[Series[1/(1-7x+35x^3-35x^4+7x^6-x^7),{x,0,30}],x] (* or *) LinearRecurrence[{7,0,-35,35,0,-7,1},{1,7,49,308,1946,12152,75992},30] (* Harvey P. Dale, Jul 23 2014 *)
Showing 1-5 of 5 results.
Comments