cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A038197 4-wave sequence.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 7, 9, 10, 19, 26, 30, 56, 75, 85, 160, 216, 246, 462, 622, 707, 1329, 1791, 2037, 3828, 5157, 5864, 11021, 14849, 16886, 31735, 42756, 48620, 91376, 123111, 139997, 263108, 354484, 403104, 757588, 1020696, 1160693, 2181389
Offset: 0

Views

Author

Keywords

Comments

This sequence is related to the nonagon or 9-gon.

Examples

			The first few rows of the T(n,k) array are, n>=1, 1 <= k <=4:
  0,  0,   0,   1
  1,  1,   1,   1
  1,  2,   3,   4
  4,  7,   9,   10
  10, 19,  26,  30
  30, 56,  75,  85
  85, 160, 216, 246
		

Crossrefs

The a(3*n) lead to A006357; The T(n,k) lead to A076264 and A091024.
Cf. A120747 (m = 5: hendecagon or 11-gon)

Programs

  • Maple
    m:=4: nmax:=15: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/2 do seq(T(n,k), k=1..m) od; a(0):=1: Tx:=1: for n from 2 to nmax do for k from 2 to m do a(Tx):= T(n,k): Tx:=Tx+1: od: od: seq(a(n), n=0..Tx-1); # Johannes W. Meijer, Aug 03 2011
  • Mathematica
    LinearRecurrence[{1,-1,3,-3,3,0,0,0,-1,1,-1},{1,1,1,1,2,3,4,7,9,10,19},50] (* Harvey P. Dale, Oct 02 2015 *)

Formula

a(n) = a(n-1)+a(n-2) if n=3*m+1, a(n) = a(n-1)+a(n-4) if n=3*m+2, a(n) = a(n-1)+a(n-6) if n=3*m. Also: a(n) = 2*a(n-3)+3*a(n-6)-a(n-9)-a(n-12).
G.f.: -(-1-x-x^2+x^3-x^5+x^6)/(1-2*x^3-3*x^6+x^9+x^12)
a(n-1) = sequence(sequence(T(n,k), k=2..4), n>=2) with a(0)=1; T(n,k) = sum(T(n-1,k1), k1 = 5-k..4) with T(1,1) = T(1,2) = T(1,3) = 0 and T(1,4) = 1; n>=1 and 1 <= k <= 4. [Steinbach]

Extensions

Edited by Floor van Lamoen, Feb 05 2002
Edited and information added by Johannes W. Meijer, Aug 03 2011

A206455 T(n,k) = number of 0..k arrays of length n avoiding the consecutive pattern 0..k.

Original entry on oeis.org

2, 3, 3, 4, 9, 4, 5, 16, 26, 5, 6, 25, 64, 75, 6, 7, 36, 125, 255, 216, 7, 8, 49, 216, 625, 1016, 622, 8, 9, 64, 343, 1296, 3124, 4048, 1791, 9, 10, 81, 512, 2401, 7776, 15615, 16128, 5157, 10, 11, 100, 729, 4096, 16807, 46655, 78050, 64257, 14849, 11, 12, 121, 1000
Offset: 1

Views

Author

R. H. Hardin, Feb 07 2012

Keywords

Examples

			Table starts
  2    3     4      5       6       7        8        9        10        11 ...
  3    9    16     25      36      49       64       81       100       121 ...
  4   26    64    125     216     343      512      729      1000      1331 ...
  5   75   255    625    1296    2401     4096     6561     10000     14641 ...
  6  216  1016   3124    7776   16807    32768    59049    100000    161051 ...
  7  622  4048  15615   46655  117649   262144   531441   1000000   1771561 ...
  8 1791 16128  78050  279924  823542  2097152  4782969  10000000  19487171 ...
  9 5157 64257 390125 1679508 5764787 16777215 43046721 100000000 214358881 ...
  ...
		

Crossrefs

Columns 2, 3... are A076264, A206450, A206451, A206452.
Subdiagonal 1 is A048861(n+1)

Programs

  • Maple
    N:= 20: # for the first N antidiagonals
    for k from 1 to N-1 do
      F[k]:= gfun:-rectoproc({a(n)=(k+1)*a(n-1) - a(n-k-1), seq(a(j)=(k+1)^j,j=1..k),a(k+1)=(k+1)^(k+1)-1},a(n),remember)
    od:
    seq(seq(F[m-j](j),j=1..m-1),m=1..N); # Robert Israel, Dec 17 2017
  • Mathematica
    nmax = 20;
    col[k_] := col[k] = Module[{a}, a[n_ /; n>2] := a[n] = (k+1)*a[n-1]-a[n-k-1]; a[0]=1; a[1]=k+1; a[2]=(k+1)^2; a[_?Negative]=0; Array[a, nmax]];
    T[n_, k_] := If[k == 1, n+1, col[k][[n]]];
    Table[T[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jul 22 2022 *)

Formula

Empirical: T(n,k) = sum{i=0..floor(n/(k+1))} ( (-1)^i * (k+1)^(n-(k+1)*i) * binomial(n-k*i,i) ) (after A076264)
Empirical for column k: a(n) = (k+1)*a(n-1) - a(n-(k+1)).
Formula for column k verified by Robert Israel, Dec 17 2017 (see link).

A207550 T(n,k) = Number of n X k 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column, nw-to-se diagonal or ne-to-sw antidiagonal.

Original entry on oeis.org

3, 9, 9, 26, 81, 26, 75, 676, 676, 75, 216, 5625, 14974, 5625, 216, 622, 46656, 327518, 327899, 46656, 622, 1791, 386884, 7169168, 18584111, 7104784, 386884, 1791, 5157, 3207681, 156957792, 1058580304, 1033847229, 153718531, 3207681, 5157, 14849
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2012

Keywords

Comments

Table starts
....3........9..........26..............75................216
....9.......81.........676............5625..............46656
...26......676.......14974..........327518............7169168
...75.....5625......327899........18584111.........1058580304
..216....46656.....7104784......1033847229.......151596413811
..622...386884...153718531.....57282563287.....21553876840265
.1791..3207681..3323115736...3168082336959...3054158366460488
.5157.26594649.71828785449.175129179194410.432330439527473859

Examples

			Some solutions for n=4, k=3
..2..2..1....0..0..0....2..0..2....1..0..1....2..1..2....1..2..2....2..0..1
..2..0..0....2..0..2....1..1..1....2..0..2....1..2..1....0..0..1....0..0..2
..2..0..0....2..0..1....1..0..0....0..2..2....0..2..1....1..2..0....1..1..2
..2..2..2....0..0..0....1..2..2....2..0..2....1..1..2....1..2..1....0..0..1
		

Crossrefs

Column 1 is A076264.
Column 2 is A206694.
Row 1 is A076264.
Row 2 is A206694.

A250351 T(n,k)=Number of length n arrays x(i), i=1..n with x(i) in i..i+k and no value appearing more than 2 times.

Original entry on oeis.org

2, 3, 4, 4, 9, 8, 5, 16, 26, 16, 6, 25, 62, 75, 32, 7, 36, 122, 235, 216, 64, 8, 49, 212, 581, 888, 622, 128, 9, 64, 338, 1221, 2724, 3349, 1791, 256, 10, 81, 506, 2287, 6900, 12734, 12620, 5157, 512, 11, 100, 722, 3935, 15186, 38543, 59406, 47545, 14849, 1024, 12
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2014

Keywords

Comments

Table starts
....2.....3......4.......5........6.........7.........8..........9.........10
....4.....9.....16......25.......36........49........64.........81........100
....8....26.....62.....122......212.......338.......506........722........992
...16....75....235.....581.....1221......2287......3935.......6345.......9721
...32...216....888....2724.....6900.....15186.....30072......54888......93924
...64...622...3349...12734....38543.....99344....226247.....467642.....894599
..128..1791..12620...59406...214716....644040...1681860....3932472....8409252
..256..5157..47545..276816..1193739...4164930..12411486...32743710...78177402
..512.14849.179104.1289208..6628042..26882466..91384716..270990642..720784488
.1024.42756.674666.6002949.36773706.173276640.671639928.2238089580.6611373660

Examples

			Some solutions for n=6 k=4
..2....3....2....0....4....2....4....3....4....0....3....1....0....4....4....4
..3....1....2....1....3....2....1....4....1....4....5....4....5....4....5....1
..3....4....4....4....2....3....4....5....5....2....4....5....6....6....3....2
..5....7....7....4....5....6....5....3....4....5....4....6....5....6....6....5
..7....6....7....7....7....6....5....5....7....6....8....5....7....7....7....7
..9....6....9....9....6....5....9....8....7....6....5....6....8....5....7....9
		

Crossrefs

Column 1 is A000079
Column 2 is A076264(n)
Row 1 is A000027(n+1)
Row 2 is A000290(n+1)

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-3)
k=3: a(n) = 4*a(n-1) -2*a(n-3) -5*a(n-4) +a(n-6) = A250346(n)
k=4: [order 12] = A250347(n)
k=5: [order 24] = A250348(n)
k=6: [order 48] = A250349(n).
k=7: [order 96] = A250350(n).
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n + 2 = A250352(n).
n=4: a(n) = n^4 + 4*n^3 + 2*n^2 + 9*n + 1 for n>1 = A250353(n).
n=5: a(n) = n^5 + 5*n^4 + 25*n^2 + 5*n for n>2 = A250354(n).
n=6: a(n) = n^6 + 6*n^5 - 5*n^4 + 55*n^3 + 25*n^2 - 61*n + 98 for n>3 = A250355(n).
n=7: a(n) = n^7 + 7*n^6 - 14*n^5 + 105*n^4 + 105*n^3 - 532*n^2 + 1252*n - 744 for n>4 = A250356(n).

A200785 T(n,k) is the number of arrays of n+2 elements from {0,1,...,k} with no two consecutive ascents.

Original entry on oeis.org

8, 26, 16, 60, 75, 32, 115, 225, 216, 64, 196, 530, 840, 622, 128, 308, 1071, 2425, 3136, 1791, 256, 456, 1946, 5796, 11100, 11704, 5157, 512, 645, 3270, 12152, 31395, 50775, 43681, 14849, 1024, 880, 5175, 23136, 75992, 169884, 232275, 163020, 42756, 2048
Offset: 1

Views

Author

R. H. Hardin Nov 22 2011

Keywords

Comments

All the conjectured formulas are true, and follow from the Burstein-Mansour paper. - N. J. A. Sloane, May 21 2013

Examples

			Table starts
....8.....26......60.......115.......196........308.........456.........645
...16.....75.....225.......530......1071.......1946........3270........5175
...32....216.....840......2425......5796......12152.......23136.......40905
...64....622....3136.....11100.....31395......75992......164004......324087
..128...1791...11704.....50775....169884.....474566.....1160616.....2562633
..256...5157...43681....232275....919413....2964416.....8216484....20273247
..512..14849..163020...1062500...4975322...18514405....58154912...160338680
.1024..42756..608400...4860250..26924106..115637431...411637168..1268210421
.2048.123111.2270580..22232375.145698840..722234149..2913595712.10030582998
.4096.354484.8473921.101698250.788446400.4510869636.20622837480.79335475611
Some arrays for n=4, k=3:
..0....1....0....0....1....0....3....3....0....1....3....0....2....2....2....2
..3....0....2....2....0....2....0....0....3....1....0....0....0....3....3....3
..2....3....2....2....2....2....3....3....1....0....1....0....2....1....3....3
..1....0....2....1....0....0....2....2....2....2....1....2....2....0....0....2
..0....3....0....0....1....2....1....2....0....0....3....2....0....3....1....3
..3....3....0....3....0....2....3....2....0....3....0....0....2....2....1....3
		

Crossrefs

Column 1 is A000079
Column 2 is A076264
Column 3 is A072335
Row 1 is A002413
Cf. A200781.

Formula

T(n-2,k) = \sum_{L=0}^n (-1)^L / L! * \sum_{M=0}^{min(L,[(n-L)/2])} binomial(n-L-M,M) * M! * (k+1)^(n-L-2*M) B_{L,M}(x_1,x_2,...), where B_{L,M}() are Bell polynomials, x_i = binomial(k+1,i+2) * i! * f(i), i=1,2,..., and f(i) has period of length 6: [0,1,1,0,-1,-1] (i.e., f(0)=0, f(1)=1, etc.). This formula implies that for a fixed n, T(n,k) is a polynomial in k, which is easy to compute. - Max Alekseyev, Dec 12 2011
Empirical formulas for columns:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-3)
k=3: a(n) = 4*a(n-1) -4*a(n-3) +a(n-4)
k=4: a(n) = 5*a(n-1) -10*a(n-3) +5*a(n-4)
k=5: a(n) = 6*a(n-1) -20*a(n-3) +15*a(n-4) -a(n-6)
k=6: a(n) = 7*a(n-1) -35*a(n-3) +35*a(n-4) -7*a(n-6) +a(n-7)
k=7: a(n) = 8*a(n-1) -56*a(n-3) +70*a(n-4) -28*a(n-6) +8*a(n-7)
Empirical recurrence for general column k:
0 = sum{i=0..floor(k/3) (binomial(k+1,3*i+1)*T(n-(3*i+1),k))} - sum{i=0..floor((k+1)/3) (binomial(k+1,3*i)*T(n-3*i,k))}
Formulae for rows:
T(1,k) = (5/6)*k^3 + 3*k^2 + (19/6)*k + 1
T(2,k) = (17/24)*k^4 + (43/12)*k^3 + (151/24)*k^2 + (53/12)*k + 1
T(3,k) = (7/12)*k^5 + (47/12)*k^4 + (39/4)*k^3 + (133/12)*k^2 + (17/3)*k + 1
T(4,k) = (349/720)*k^6 + (321/80)*k^5 + (1883/144)*k^4 + (1013/48)*k^3 + (3139/180)*k^2 + (413/60)*k + 1
T(5,k) = (2017/5040)*k^7 + (1427/360)*k^6 + (5759/360)*k^5 + (607/18)*k^4 + (28459/720)*k^3 + (9113/360)*k^2 + (848/105)*k + 1
T(6,k) = (6679/20160)*k^8 + (4799/1260)*k^7 + (26449/1440)*k^6 + (2162/45)*k^5 + (212153/2880)*k^4 + (6019/90)*k^3 + (174571/5040)*k^2 + (3893/420)*k + 1
T(7,k) = (99377/362880)*k^9 + (48247/13440)*k^8 + (243673/12096)*k^7 + (60529/960)*k^6 + (2076437/17280)*k^5 + (274529/1920)*k^4 + (952027/9072)*k^3 + (152461/3360)*k^2 + (26399/2520)*k + 1

A052536 Number of compositions of n when parts 1 and 2 are of two kinds.

Original entry on oeis.org

1, 2, 6, 17, 49, 141, 406, 1169, 3366, 9692, 27907, 80355, 231373, 666212, 1918281, 5523470, 15904198, 45794313, 131859469, 379674209, 1093228314, 3147825473, 9063802210, 26098178316, 75146709475, 216376326215, 623030800329
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

The g.f. for compositions of k_1 kinds of 1's, k_2 kinds of 2's, ..., k_j kinds of j's, ... is 1/(1 - Sum_{j>=1} k_j * x^j). - Joerg Arndt, Jul 06 2011

Examples

			a(2)=6 because we have (2),(2'),(1,1),(1,1'),(1',1) and (1',1').
		

Crossrefs

Row sums of A105478.

Programs

  • Maple
    spec := [S,{S=Sequence(Union(Z,Prod(Z,Union(Z,Sequence(Z)))))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    a[0] = 1; a[1] = 2; a[2] = 6; a[n_] := a[n] = 3*a[n-1] - a[n-3]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jun 12 2013, after Emeric Deutsch *)
  • PARI
    Vec((1-x)/(1-3*x+x^3)+O(x^99)) \\ Charles R Greathouse IV, Nov 20 2011

Formula

G.f.: (1-x)/(1 - 3*x + x^3).
G.f.: 1/(1 - (2*x + 2*x^2 + Sum_{j>=3} x^j)). - Joerg Arndt, Jul 06 2011
a(n) = Sum(-(1/9)*(-2 + r^2 - r)*r^(-1-n)), r = RootOf(1 - 3*x + x^3).
a(0)=1, a(1)=2, a(2)=6, a(n) = 3*a(n-1) - a(n-3) for n >= 3. - Emeric Deutsch, Apr 10 2005
a(n) = left term in M^n * [1 0 0], where M = the 3 X 3 matrix [2 1 1 / 1 1 0 / 1 0 0]. Right term in M^n *[1 0 0] is a(n-1); middle term is A076264(n-1). - Gary W. Adamson, Sep 05 2005
3*a(n) = A123891(n+1). - Jeffrey R. Goodwin, Jul 03 2011

Extensions

More terms from James Sellers, Jun 06 2000
Edited by Emeric Deutsch, Apr 10 2005
More terms from Gary W. Adamson, Sep 05 2005

A206700 T(n,k)=Number of nXk 0..2 arrays avoiding the pattern z-2 z-1 z in any row or column.

Original entry on oeis.org

3, 9, 9, 26, 81, 26, 75, 676, 676, 75, 216, 5625, 15712, 5625, 216, 622, 46656, 363465, 363465, 46656, 622, 1791, 386884, 8366690, 23335217, 8366690, 386884, 1791, 5157, 3207681, 192513201, 1488199144, 1488199144, 192513201, 3207681, 5157, 14849
Offset: 1

Views

Author

R. H. Hardin Feb 11 2012

Keywords

Comments

Table starts
....3........9...........26..............75.................216
....9.......81..........676............5625...............46656
...26......676........15712..........363465.............8366690
...75.....5625.......363465........23335217..........1488199144
..216....46656......8366690......1488199144........262482902920
..622...386884....192513201.....94853765621......46260684361347
.1791..3207681...4428597297...6043775871265....8149739471342829
.5157.26594649.101873060353.385074186960645.1435662206447144342

Examples

			Some solutions for n=4 k=3
..2..0..1....2..0..1....0..0..2....2..0..1....2..1..0....2..2..2....2..1..0
..0..0..2....2..0..2....0..0..2....2..0..2....0..1..1....1..2..1....2..1..2
..1..1..2....1..0..2....0..0..0....2..0..2....1..0..0....0..2..2....2..1..1
..0..0..1....1..2..1....1..2..0....2..0..1....1..2..2....0..0..2....0..1..1
		

Crossrefs

Column 1 is A076264

A052541 Expansion of 1/(1-3*x-x^3).

Original entry on oeis.org

1, 3, 9, 28, 87, 270, 838, 2601, 8073, 25057, 77772, 241389, 749224, 2325444, 7217721, 22402387, 69532605, 215815536, 669848995, 2079079590, 6453054306, 20029011913, 62166115329, 192951400293, 598883212792, 1858815753705, 5769398661408, 17907079197016
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

A transform of A000244 under the mapping mapping g(x)->(1/(1-x^3))g(x/(1-x^3)). - Paul Barry, Oct 20 2004
a(n) equals the number of n-length words on {0,1,2,3} such that 0 appears only in a run which length is a multiple of 3. - Milan Janjic, Feb 17 2015

Crossrefs

Cf. A076264.

Programs

  • GAP
    a:=[1,3,9];; for n in [4..30] do a[n]:=3*a[n-1]+a[n-3]; od; a; # G. C. Greubel, May 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x/(1-3*x-x^3) )); // G. C. Greubel, May 09 2019
    
  • Maple
    spec := [S,{S=Sequence(Union(Z,Z,Z,Prod(Z,Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..30);
  • Mathematica
    CoefficientList[Series[x/(1-3*x-x^3), {x, 0, 30}], x] (* Zerinvary Lajos, Mar 29 2007 *)
    LinearRecurrence[{3,0,1},{1,3,9},30] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
  • PARI
    my(x='x+O('x^30)); Vec(x/(1-3*x-x^3)) \\ G. C. Greubel, May 09 2019
    
  • Sage
    (x/(1-3*x-x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
    

Formula

G.f.: 1/(1 - 3*x - x^3).
a(n) = 3*a(n-1) + a(n-3), with a(0)=1, a(1)=3.
a(n) = Sum_{alpha = RootOf(-1+3*x+x^3)} (1/15)*(4 + alpha + 2*alpha^2) * alpha^(-n-1).
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k) * 3^(n-3*k). - Paul Barry, Oct 20 2004

Extensions

More terms from James Sellers, Jun 06 2000

A207317 T(n,k)=Number of nXk 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column or nw-to-se diagonal.

Original entry on oeis.org

3, 9, 9, 26, 81, 26, 75, 676, 676, 75, 216, 5625, 15390, 5625, 216, 622, 46656, 347502, 347502, 46656, 622, 1791, 386884, 7791488, 21162579, 7791488, 386884, 1791, 5157, 3207681, 174545777, 1274682671, 1274682671, 174545777, 3207681, 5157, 14849
Offset: 1

Views

Author

R. H. Hardin Feb 16 2012

Keywords

Comments

Table starts
....3........9..........26..............75................216
....9.......81.........676............5625..............46656
...26......676.......15390..........347502............7791488
...75.....5625......347502........21162579.........1274682671
..216....46656.....7791488......1274682671.......205235353935
..622...386884...174545777.....76655305645.....32960886054362
.1791..3207681..3908531208...4606553380932...5287481507599689
.5157.26594649.87515884741.276789915709747.847996342709895834

Examples

			Some solutions for n=4 k=3
..2..0..1....2..0..2....0..0..2....2..2..2....2..2..1....2..2..0....2..1..2
..2..0..2....1..1..1....0..0..2....1..2..1....2..0..2....0..0..2....1..2..1
..1..0..2....1..0..0....0..0..0....0..2..2....2..2..0....2..0..0....0..2..1
..1..2..1....1..2..2....1..2..0....0..0..2....0..2..1....1..0..1....1..1..2
		

Crossrefs

Column 1 is A076264
Column 2 is A206694

A091024 Let v(0) be the column vector (1,0,0,0)'; for n>0, let v(n) = [1 1 1 1 / 1 1 1 0 / 1 1 0 0/ 1 0 0 0] v(n-1). Sequence gives third entry of v(n).

Original entry on oeis.org

0, 1, 2, 7, 19, 56, 160, 462, 1329, 3828, 11021, 31735, 91376, 263108, 757588, 2181389, 6281058, 18085587, 52075371, 149945056, 431749580, 1243173370, 3579575053, 10306975580, 29677753369, 85453685055, 246054079584
Offset: 0

Views

Author

Gary W. Adamson, Dec 14 2003

Keywords

Comments

First entry of v(n) gives 1,1,4,10,30,85 = A006357 prefixed with an initial 1, the second entry gives 0,1,3,9,26,... = A076264 prefixed with an initial 0.
A sequence derived from 9-gonal diagonal ratios.
a(n)/a(n-1) converges to D = 2.879385... = longest 9-Gon diagonal with edge = 1. E.g., a(7)/a(6) = 707/246 = 2.873983...(a(n)/a(n-1) of all 4 columns converge to 2.8739...). For each row, left to right, terms converge upon 9-Gon ratios: (2.879...):(2.53208...):(1.87938...):(1) Example: row 7 = 707 622 462 246, from A006357, A076264, A091024 and A006357(offset), respectively. The ratios 707/246, 622/246, 462/246 and 246/246 are: (2.8739...):(2.528...):(1.87804...):(1)
From L. Edson Jeffery, Mar 15 2011: (Start)
In fact, the above ratios (2.8739...):(2.528...):(1.87804...):(1) converge to Q_3(w):Q_2(w):Q_1(w):Q_0(w), where the polynomials Q_r(w) are defined by Q_r(w)=w*Q_(r-1)(w)-Q_(r-2)(w) (r>1), Q_0(w)=1, Q_1(w)=w, and w=2*cos(Pi/9).
Moreover, this sequence and a variant of its g.f. are related to rhombus substitution tilings showing 9-fold rotational symmetry (cf. A187503, A187504, A187505, A187506). (End)

Examples

			A006357, A076264, a(n) and A006357 (offset) gives the 4 components of v(n) transposed:
1 0 0 0
1 1 1 1
4 3 2 1
10 9 7 4
30 26 19 10
85 75 56 30
		

References

  • Jay Kappraff, "Beyond Measure, A Guided Tour Through Nature, Myth and Number" (p. 497 gives the analogous case for the Heptagon).

Crossrefs

Programs

  • Mathematica
    a[n_] := (MatrixPower[{{1, 1, 1, 1}, {1, 1, 1, 0}, {1, 1, 0, 0}, {1, 0, 0, 0}}, n].{{1}, {0}, {0}, {0}})[[3, 1]]; Table[ a[n], {n, 0, 26}] (* Robert G. Wilson v, Feb 21 2005 *)
    LinearRecurrence[{2,3,-1,-1},{0,1,2,7},30] (* Harvey P. Dale, Feb 18 2016 *)

Formula

Recurrence: a(n) = 2*a(n-1) + 3*a(n-2) - a(n-3) - a(n-4), with initial conditions {a(k)}={0,1,2,7}, k=0,1,2,3. - L. Edson Jeffery, Mar 15 2011
G.f.: x/(1 - 2*x - 3*x^2 + x^3 + x^4). - L. Edson Jeffery, Mar 15 2011
G.f.: Q(0)*x/(2+2*x) , where Q(k) = 1 + 1/(1 - x*(12*k-3 + x^2)/( x*(12*k+3 + x^2 ) - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 12 2013

Extensions

More terms from Robert G. Wilson v, Feb 21 2005
Showing 1-10 of 23 results. Next