A317497
Triangle T(n,k) = 3*T(n-1,k) + T(n-3,k-1) for k = 0..floor(n/3) with T(0,0) = 1 and T(n,k) = 0 for n or k < 0, read by rows.
Original entry on oeis.org
1, 3, 9, 27, 1, 81, 6, 243, 27, 729, 108, 1, 2187, 405, 9, 6561, 1458, 54, 19683, 5103, 270, 1, 59049, 17496, 1215, 12, 177147, 59049, 5103, 90, 531441, 196830, 20412, 540, 1, 1594323, 649539, 78732, 2835, 15, 4782969, 2125764, 295245, 13608, 135, 14348907, 6908733, 1082565, 61236, 945, 1
Offset: 0
Triangle begins:
1;
3;
9;
27, 1;
81, 6;
243, 27;
729, 108, 1;
2187, 405, 9;
6561, 1458, 54;
19683, 5103, 270, 1;
59049, 17496, 1215, 12;
177147, 59049, 5103, 90;
531441, 196830, 20412, 540, 1;
1594323, 649539, 78732, 2835, 15;
4782969, 2125764, 295245, 13608, 135;
14348907, 6908733, 1082565, 61236, 945, 1;
43046721, 22320522, 3897234, 262440, 5670, 18;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 364-366
Sequences of the form 3^(n-q*k)*binomial(n-(q-1)*k, k):
A027465 (q=1),
A304249 (q=2), this sequence (q=3),
A318773 (q=4).
-
Flat(List([0..16],n->List([0..Int(n/3)],k->3^(n-3*k)/(Factorial(n-3*k)*Factorial(k))*Factorial(n-2*k)))); # Muniru A Asiru, Aug 01 2018
-
[3^(n-3*k)*Binomial(n-2*k,k): k in [0..Floor(n/3)], n in [0..24]]; // G. C. Greubel, May 12 2021
-
T[n_, k_]:= T[n, k] = 3^(n-3k)(n-2k)!/((n-3k)! k!); Table[T[n, k], {n, 0, 15}, {k, 0, Floor[n/3]} ]//Flatten
T[0, 0] = 1; T[n_, k_]:= T[n, k] = If[n<0 || k<0, 0, 3 T[n-1, k] + T[n-3, k-1]]; Table[T[n, k], {n, 0, 15}, {k, 0, Floor[n/3]}]//Flatten
-
flatten([[3^(n-3*k)*binomial(n-2*k,k) for k in (0..n//3)] for n in (0..24)]) # G. C. Greubel, May 12 2021
A117716
Triangle T(n,k) read by rows: the coefficient [x^n] of x^2/(1-(k+1)*x-x^3) in row n, columns 0 <= k <= n.
Original entry on oeis.org
0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 1, 4, 9, 16, 25, 2, 9, 28, 65, 126, 217, 3, 20, 87, 264, 635, 1308, 2415, 4, 44, 270, 1072, 3200, 7884, 16954, 32960, 6, 97, 838, 4353, 16126, 47521, 119022, 264193, 534358, 9, 214, 2601, 17676, 81265, 286434, 835569, 2117656, 4815801, 10050030
Offset: 0
Triangle begins as:
0;
0, 0;
1, 1, 1;
1, 2, 3, 4;
1, 4, 9, 16, 25;
2, 9, 28, 65, 126, 217;
3, 20, 87, 264, 635, 1308, 2415;
4, 44, 270, 1072, 3200, 7884, 16954, 32960;
-
m:=12;
R:=PowerSeriesRing(Integers(), m+2);
A117716:= func< n,k | Coefficient(R!( x^2/(1-(k+1)*x-x^3) ), n) >;
[[A117716(n,k): k in [0..n]]: n in [0..m]]; // G. C. Greubel, Jul 23 2023
-
A117716 := proc(n,m)
x^2/(1-(m+1)*x-x^3) ;
if n < 0 then
0;
else
coeftayl(%,x=0,n) ;
end if;
end proc: # R. J. Mathar, May 14 2013
-
T[n_, k_]:= T[n, k]= Coefficient[Series[x^2/(1-(k+1)*x-x^3), {x,0,n+ 2}], x, n];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
-
def A117716(n,k):
P. = PowerSeriesRing(QQ)
return P( x^2/(1-(k+1)*x-x^3) ).list()[n]
flatten([[A117716(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 23 2023
A098590
a(n) = 4^n for n = 0..3; for n > 3, a(n) = 4*a(n-1) + a(n-4).
Original entry on oeis.org
1, 4, 16, 64, 257, 1032, 4144, 16640, 66817, 268300, 1077344, 4326016, 17370881, 69751824, 280084640, 1124664576, 4516029185, 18133868564, 72815558896, 292386900160, 1174063629825, 4714388387864, 18930369110352, 76013863341568
Offset: 0
-
I:=[0,1,4,16]; [n le 4 select I[n] else 4*Self(n-1) +Self(n-4): n in [1..30]]; // G. C. Greubel, Feb 03 2018
-
K:=1/(1+4*z-z^4): Kser:=series(K, z=0, 30): seq(abs(coeff(Kser, z, n)), n= 0..23); # Zerinvary Lajos, Nov 08 2007
-
CoefficientList[Series[1/(1 - 4*x - x^4), {x, 0, 25}], x] (* Zerinvary Lajos, Mar 29 2007 *)
LinearRecurrence[{4,0,0,1},{0,1,4,16},30] (* Harvey P. Dale, Jul 22 2014 *)
-
x='x+O('x^30); Vec(1/(1-4*x-x^4)) \\ G. C. Greubel, Feb 03 2018
A052668
Expansion of e.g.f. 1/(1 - 3*x - x^3).
Original entry on oeis.org
1, 3, 18, 168, 2088, 32400, 603360, 13109040, 325503360, 9092684160, 282219033600, 9635476435200, 358879494758400, 14480588157235200, 629228583138355200, 29295027261916416000, 1454816084780298240000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( 1/(1-3*x-x^3) ))); // G. C. Greubel, Sep 03 2022
-
spec := [S,{S=Sequence(Union(Z,Z,Z,Prod(Z,Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
a[n_]:= a[n]= If[n<3, 3^n*n!, 3*n*a[n-1] + n*(n-1)*(n-2)*a[n-3]];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Sep 03 2022 *)
-
def A052668_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( 1/(1-3*x-x^3) ).egf_to_ogf().list()
A052668_list(40) # G. C. Greubel, Sep 03 2022
A098589
a(n) = 3*a(n-1) + 2*a(n-3), with a(0)=1, a(1)=3.
Original entry on oeis.org
1, 3, 9, 29, 93, 297, 949, 3033, 9693, 30977, 98997, 316377, 1011085, 3231249, 10326501, 33001673, 105467517, 337055553, 1077170005, 3442445049, 11001446253, 35158678769, 112360926405, 359085671721, 1147574372701
Offset: 0
-
I:=[1,3,9]; [n le 3 select I[n] else 3*Self(n-1) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 03 2018
-
CoefficientList[Series[1/(1-3*x-2*x^3), {x,0,50}], x] (* or *) LinearRecurrence[{3,0,2},{1,3,9}, 50] (* G. C. Greubel, Feb 03 2018 *)
-
x='x+O('x^30); Vec(1/(1-3*x-2*x^3)) \\ G. C. Greubel, Feb 03 2018
A183188
a(n) = 3*a(n-1) + a(n-3) with a(0)=1, a(1)=2, a(2)=6.
Original entry on oeis.org
1, 2, 6, 19, 59, 183, 568, 1763, 5472, 16984, 52715, 163617, 507835, 1576220, 4892277, 15184666, 47130218, 146282931, 454033459, 1409230595, 4373974716, 13575957607, 42137103416, 130785284964, 405931812499, 1259932540913, 3910582907703, 12137680535608
Offset: 0
-
LinearRecurrence[{3,0,1},{1,2,6},30] (* Harvey P. Dale, Nov 02 2024 *)
Showing 1-6 of 6 results.
Comments