A304249
Triangle T(n,k) = 3*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2), with T(0,0) = 1 and T(n,k) = 0 for n < 0 or k < 0, read by rows.
Original entry on oeis.org
1, 3, 9, 1, 27, 6, 81, 27, 1, 243, 108, 9, 729, 405, 54, 1, 2187, 1458, 270, 12, 6561, 5103, 1215, 90, 1, 19683, 17496, 5103, 540, 15, 59049, 59049, 20412, 2835, 135, 1, 177147, 196830, 78732, 13608, 945, 18, 531441, 649539, 295245, 61236, 5670, 189, 1
Offset: 0
Triangle begins:
1;
3;
9, 1;
27, 6;
81, 27, 1;
243, 108, 9;
729, 405, 54, 1;
2187, 1458, 270, 12;
6561, 5103, 1215, 90, 1;
19683, 17496, 5103, 540, 15;
59049, 59049, 20412, 2835, 135, 1;
177147, 196830, 78732, 13608, 945, 18;
531441, 649539, 295245, 61236, 5670, 189, 1;
1594323, 2125764, 1082565, 262440, 30618, 1512, 21;
4782969, 6908733, 3897234, 1082565, 153090, 10206, 252, 1;
14348907, 22320522, 13817466, 4330260, 721710, 61236, 2268, 24;
43046721, 71744535, 48361131, 16888014, 3247695, 336798, 17010, 324, 1;
129140163, 229582512, 167403915, 64481508, 14073345, 1732104, 112266, 3240, 27;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 86, 363.
Sequences of the form 3^(n-q*k)*binomial(n-(q-1)*k, k):
A027465 (q=1), this sequence (q=2),
A317497 (q=3),
A318773 (q=4).
-
[3^(n-2*k)*Binomial(n-k,k): k in [0..Floor(n/2)], n in [0..24]]; // G. C. Greubel, May 12 2021
-
T[0, 0] = 1; T[n_, k_]:= If[n<0 || k<0, 0, 3T[n-1, k] + T[n-2, k-1]];
Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}]//Flatten
With[{q=2}, Table[3^(n-q*k)*Binomial[n-(q-1)*k, k], {n,0,24}, {k,0,Floor[n/q]}] ]//Flatten (* G. C. Greubel, May 12 2021 *)
-
T(n,k)=if( n>0 && k>0, 3*T(n-1, k) + T(n-2, k-1), !n && !k)
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 10 2018
-
flatten([[3^(n-2*k)*binomial(n-k,k) for k in (0..n//2)] for n in (0..24)]) # G. C. Greubel, May 12 2021
A317496
Triangle T(n,k) = T(n-1,k) + 3*T(n-3,k-1) for k = 0..floor(n/3) with T(0,0) = 1, T(n,k) = 0 for n or k < 0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 6, 1, 9, 1, 12, 9, 1, 15, 27, 1, 18, 54, 1, 21, 90, 27, 1, 24, 135, 108, 1, 27, 189, 270, 1, 30, 252, 540, 81, 1, 33, 324, 945, 405, 1, 36, 405, 1512, 1215, 1, 39, 495, 2268, 2835, 243, 1, 42, 594, 3240, 5670, 1458, 1, 45, 702, 4455, 10206, 5103, 1, 48, 819, 5940, 17010, 13608, 729
Offset: 0
Triangle begins:
1;
1;
1;
1, 3;
1, 6;
1, 9;
1, 12, 9;
1, 15, 27;
1, 18, 54;
1, 21, 90, 27;
1, 24, 135, 108;
1, 27, 189, 270;
1, 30, 252, 540, 81;
1, 33, 324, 945, 405;
1, 36, 405, 1512, 1215;
1, 39, 495, 2268, 2835, 243;
1, 42, 594, 3240, 5670, 1458;
1, 45, 702, 4455, 10206, 5103;
1, 48, 819, 5940, 17010, 13608, 729;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 364-366.
Sequences of the form 3^k*binomial(n-(q-1)*k, k):
A013610 (q=1),
A304236 (q=2), this sequence (q=3),
A318772 (q=4).
-
Flat(List([0..20],n->List([0..Int(n/3)],k->3^k/(Factorial(n-3*k)*Factorial(k))*Factorial(n-2*k)))); # Muniru A Asiru, Aug 01 2018
-
[3^k*Binomial(n-2*k,k): k in [0..Floor(n/3)], n in [0..24]]; // G. C. Greubel, May 12 2021
-
T[n_, k_]:= T[n, k] = 3^k*(n-2*k)!/((n-3*k)!*k!); Table[T[n, k], {n, 0, 18}, {k, 0, Floor[n/3]} ]//Flatten
T[0, 0] = 1; T[n_, k_]:= T[n, k] = If[n<0 || k<0, 0, T[n-1, k] + 3T[n-3, k-1]]; Table[T[n, k], {n, 0, 18}, {k, 0, Floor[n/3]}]//Flatten
-
flatten([[3^k*binomial(n-2*k,k) for k in (0..n//3)] for n in (0..24)]) # G. C. Greubel, May 12 2021
A318772
Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 3 * T(n-4,k-1) for k = 0..floor(n/4); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 6, 1, 9, 1, 12, 1, 15, 9, 1, 18, 27, 1, 21, 54, 1, 24, 90, 1, 27, 135, 27, 1, 30, 189, 108, 1, 33, 252, 270, 1, 36, 324, 540, 1, 39, 405, 945, 81, 1, 42, 495, 1512, 405, 1, 45, 594, 2268, 1215, 1, 48, 702, 3240, 2835, 1, 51, 819, 4455, 5670, 243, 1, 54, 945, 5940, 10206, 1458
Offset: 0
Triangle begins:
1;
1;
1;
1;
1, 3;
1, 6;
1, 9;
1, 12;
1, 15, 9;
1, 18, 27;
1, 21, 54;
1, 24, 90;
1, 27, 135, 27;
1, 30, 189, 108;
1, 33, 252, 270;
1, 36, 324, 540;
1, 39, 405, 945, 81;
1, 42, 495, 1512, 405;
1, 45, 594, 2268, 1215;
...
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.
-
[3^k*Binomial(n-3*k,k): k in [0..Floor(n/4)], n in [0..24]]; // G. C. Greubel, May 12 2021
-
T[n_, k_]:= T[n, k]= 3^k(n-3k)!/((n-4k)! k!); Table[T[n, k], {n, 0, 21}, {k, 0, Floor[n/4]} ] // Flatten
T[0, 0] = 1; T[n_, k_] := T[n, k] = If[n<0 || k<0, 0, T[n-1, k] + 3T[n-4, k-1]]; Table[T[n, k], {n, 0, 21}, {k, 0, Floor[n/4]}] // Flatten
-
flatten([[3^k*binomial(n-3*k,k) for k in (0..n//4)] for n in (0..24)]) # G. C. Greubel, May 12 2021
A318773
Triangle T(n,k) = 3*T(n-1,k) + T(n-4,k-1) for k = 0..floor(n/4), with T(0,0) = 1 and T(n,k) = 0 for n or k < 0, read by rows.
Original entry on oeis.org
1, 3, 9, 27, 81, 1, 243, 6, 729, 27, 2187, 108, 6561, 405, 1, 19683, 1458, 9, 59049, 5103, 54, 177147, 17496, 270, 531441, 59049, 1215, 1, 1594323, 196830, 5103, 12, 4782969, 649539, 20412, 90, 14348907, 2125764, 78732, 540, 43046721, 6908733, 295245, 2835, 1, 129140163, 22320522, 1082565, 13608, 15
Offset: 0
Triangle begins:
1;
3;
9;
27;
81, 1;
243, 6;
729, 27;
2187, 108;
6561, 405, 1;
19683, 1458, 9;
59049, 5103, 54;
177147, 17496, 270;
531441, 59049, 1215, 1;
1594323, 196830, 5103, 12;
4782969, 649539, 20412, 90;
14348907, 2125764, 78732, 540;
43046721, 6908733, 295245, 2835, 1;
129140163, 22320522, 1082565, 13608, 15;
387420489, 71744535, 3897234, 61236, 135;
...
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.
Sequences of the form 3^(n-q*k)*binomial(n-(q-1)*k, k):
A027465 (q=1),
A304249 (q=2),
A317497 (q=3), this sequence (q=4).
-
[3^(n-4*k)*Binomial(n-3*k,k): k in [0..Floor(n/4)], n in [0..24]]; // G. C. Greubel, May 12 2021
-
T[n_, k_]:= T[n, k] = 3^(n-4k)*(n-3k)!/((n-4k)! k!); Table[T[n, k], {n, 0, 17}, {k, 0, Floor[n/4]} ]//Flatten
T[0, 0] = 1; T[n_, k_]:= T[n, k] = If[n<0 || k<0, 0, 3T[n-1, k] + T[n-4, k-1]]; Table[T[n, k], {n, 0, 17}, {k, 0, Floor[n/4]}]//Flatten
-
flatten([[3^(n-4*k)*binomial(n-3*k,k) for k in (0..n//4)] for n in (0..24)]) # G. C. Greubel, May 12 2021
Showing 1-4 of 4 results.
Comments