A304249
Triangle T(n,k) = 3*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2), with T(0,0) = 1 and T(n,k) = 0 for n < 0 or k < 0, read by rows.
Original entry on oeis.org
1, 3, 9, 1, 27, 6, 81, 27, 1, 243, 108, 9, 729, 405, 54, 1, 2187, 1458, 270, 12, 6561, 5103, 1215, 90, 1, 19683, 17496, 5103, 540, 15, 59049, 59049, 20412, 2835, 135, 1, 177147, 196830, 78732, 13608, 945, 18, 531441, 649539, 295245, 61236, 5670, 189, 1
Offset: 0
Triangle begins:
1;
3;
9, 1;
27, 6;
81, 27, 1;
243, 108, 9;
729, 405, 54, 1;
2187, 1458, 270, 12;
6561, 5103, 1215, 90, 1;
19683, 17496, 5103, 540, 15;
59049, 59049, 20412, 2835, 135, 1;
177147, 196830, 78732, 13608, 945, 18;
531441, 649539, 295245, 61236, 5670, 189, 1;
1594323, 2125764, 1082565, 262440, 30618, 1512, 21;
4782969, 6908733, 3897234, 1082565, 153090, 10206, 252, 1;
14348907, 22320522, 13817466, 4330260, 721710, 61236, 2268, 24;
43046721, 71744535, 48361131, 16888014, 3247695, 336798, 17010, 324, 1;
129140163, 229582512, 167403915, 64481508, 14073345, 1732104, 112266, 3240, 27;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 86, 363.
Sequences of the form 3^(n-q*k)*binomial(n-(q-1)*k, k):
A027465 (q=1), this sequence (q=2),
A317497 (q=3),
A318773 (q=4).
-
[3^(n-2*k)*Binomial(n-k,k): k in [0..Floor(n/2)], n in [0..24]]; // G. C. Greubel, May 12 2021
-
T[0, 0] = 1; T[n_, k_]:= If[n<0 || k<0, 0, 3T[n-1, k] + T[n-2, k-1]];
Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}]//Flatten
With[{q=2}, Table[3^(n-q*k)*Binomial[n-(q-1)*k, k], {n,0,24}, {k,0,Floor[n/q]}] ]//Flatten (* G. C. Greubel, May 12 2021 *)
-
T(n,k)=if( n>0 && k>0, 3*T(n-1, k) + T(n-2, k-1), !n && !k)
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 10 2018
-
flatten([[3^(n-2*k)*binomial(n-k,k) for k in (0..n//2)] for n in (0..24)]) # G. C. Greubel, May 12 2021
A317497
Triangle T(n,k) = 3*T(n-1,k) + T(n-3,k-1) for k = 0..floor(n/3) with T(0,0) = 1 and T(n,k) = 0 for n or k < 0, read by rows.
Original entry on oeis.org
1, 3, 9, 27, 1, 81, 6, 243, 27, 729, 108, 1, 2187, 405, 9, 6561, 1458, 54, 19683, 5103, 270, 1, 59049, 17496, 1215, 12, 177147, 59049, 5103, 90, 531441, 196830, 20412, 540, 1, 1594323, 649539, 78732, 2835, 15, 4782969, 2125764, 295245, 13608, 135, 14348907, 6908733, 1082565, 61236, 945, 1
Offset: 0
Triangle begins:
1;
3;
9;
27, 1;
81, 6;
243, 27;
729, 108, 1;
2187, 405, 9;
6561, 1458, 54;
19683, 5103, 270, 1;
59049, 17496, 1215, 12;
177147, 59049, 5103, 90;
531441, 196830, 20412, 540, 1;
1594323, 649539, 78732, 2835, 15;
4782969, 2125764, 295245, 13608, 135;
14348907, 6908733, 1082565, 61236, 945, 1;
43046721, 22320522, 3897234, 262440, 5670, 18;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 364-366
Sequences of the form 3^(n-q*k)*binomial(n-(q-1)*k, k):
A027465 (q=1),
A304249 (q=2), this sequence (q=3),
A318773 (q=4).
-
Flat(List([0..16],n->List([0..Int(n/3)],k->3^(n-3*k)/(Factorial(n-3*k)*Factorial(k))*Factorial(n-2*k)))); # Muniru A Asiru, Aug 01 2018
-
[3^(n-3*k)*Binomial(n-2*k,k): k in [0..Floor(n/3)], n in [0..24]]; // G. C. Greubel, May 12 2021
-
T[n_, k_]:= T[n, k] = 3^(n-3k)(n-2k)!/((n-3k)! k!); Table[T[n, k], {n, 0, 15}, {k, 0, Floor[n/3]} ]//Flatten
T[0, 0] = 1; T[n_, k_]:= T[n, k] = If[n<0 || k<0, 0, 3 T[n-1, k] + T[n-3, k-1]]; Table[T[n, k], {n, 0, 15}, {k, 0, Floor[n/3]}]//Flatten
-
flatten([[3^(n-3*k)*binomial(n-2*k,k) for k in (0..n//3)] for n in (0..24)]) # G. C. Greubel, May 12 2021
A318774
Coefficients in expansion of 1/(1 - x - 3*x^4).
Original entry on oeis.org
1, 1, 1, 1, 4, 7, 10, 13, 25, 46, 76, 115, 190, 328, 556, 901, 1471, 2455, 4123, 6826, 11239, 18604, 30973, 51451, 85168, 140980, 233899, 388252, 643756, 1066696, 1768393, 2933149, 4864417, 8064505, 13369684, 22169131, 36762382, 60955897, 101064949, 167572342, 277859488, 460727179, 763922026, 1266639052
Offset: 0
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.
Essentially a duplicate of
A143454.
-
[n le 4 select 1 else Self(n-1) +3*Self(n-4): n in [1..51]]; // G. C. Greubel, May 08 2021
-
CoefficientList[Series[1/(1-x-3x^4), {x, 0, 50}], x]
a[n_]:= a[n]= If[n<4, 1, a[n-1] + 3*a[n-4]]; Table[a[n], {n,0,50}]
LinearRecurrence[{1,0,0,3}, {1,1,1,1}, 51]
-
my(p=Mod('x,x^4-'x^3-3)); a(n) = vecsum(Vec(lift(p^n))); \\ Kevin Ryde, May 11 2021
-
def a(n): return 1 if (n<4) else a(n-1) + 3*a(n-4)
[a(n) for n in (0..50)] # G. C. Greubel, May 08 2021
Showing 1-3 of 3 results.
Comments