A006357
Number of distributive lattices; also number of paths with n turns when light is reflected from 4 glass plates.
Original entry on oeis.org
1, 4, 10, 30, 85, 246, 707, 2037, 5864, 16886, 48620, 139997, 403104, 1160693, 3342081, 9623140, 27708726, 79784098, 229729153, 661478734, 1904652103, 5484227157, 15791202736, 45468956106, 130922641160, 376976720745, 1085461206128, 3125460977225
Offset: 0
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
- J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- Emma L. L. Gao, Sergey Kitaev, and Philip B. Zhang, Pattern-avoiding alternating words, arXiv:1505.04078 [math.CO], 2015.
- Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (2,3,-1,-1).
-
LinearRecurrence[{2,3,-1,-1},{1,4,10,30},30] (* Harvey P. Dale, Nov 18 2013 *)
-
a(n)=local(p=4);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n) \\ Paul D. Hanna
Recurrence, alternative description from Jacques Haubrich (jhaubrich(AT)freeler.nl)
A038197
4-wave sequence.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 7, 9, 10, 19, 26, 30, 56, 75, 85, 160, 216, 246, 462, 622, 707, 1329, 1791, 2037, 3828, 5157, 5864, 11021, 14849, 16886, 31735, 42756, 48620, 91376, 123111, 139997, 263108, 354484, 403104, 757588, 1020696, 1160693, 2181389
Offset: 0
The first few rows of the T(n,k) array are, n>=1, 1 <= k <=4:
0, 0, 0, 1
1, 1, 1, 1
1, 2, 3, 4
4, 7, 9, 10
10, 19, 26, 30
30, 56, 75, 85
85, 160, 216, 246
- F. v. Lamoen, Wave sequences
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Eric Weisstein's World of Mathematics, Nonagon.
- Index entries for linear recurrences with constant coefficients, signature (1,-1,3,-3,3,0,0,0,-1,1,-1).
Cf.
A120747 (m = 5: hendecagon or 11-gon)
-
m:=4: nmax:=15: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/2 do seq(T(n,k), k=1..m) od; a(0):=1: Tx:=1: for n from 2 to nmax do for k from 2 to m do a(Tx):= T(n,k): Tx:=Tx+1: od: od: seq(a(n), n=0..Tx-1); # Johannes W. Meijer, Aug 03 2011
-
LinearRecurrence[{1,-1,3,-3,3,0,0,0,-1,1,-1},{1,1,1,1,2,3,4,7,9,10,19},50] (* Harvey P. Dale, Oct 02 2015 *)
A120747
Sequence relating to the 11-gon (or hendecagon).
Original entry on oeis.org
0, 1, 4, 14, 50, 175, 616, 2163, 7601, 26703, 93819, 329615, 1158052, 4068623, 14294449, 50221212, 176444054, 619907431, 2177943781, 7651850657, 26883530748, 94450905714, 331837870408, 1165858298498, 4096053203771, 14390815650209, 50559786403254
Offset: 1
From _Johannes W. Meijer_, Aug 03 2011: (Start)
The lengths of the regular hendecagon edge and diagonals are:
r[1] = 1.000000000, r[2] = 1.918985948, r[3] = 2.682507066,
r[4] = 3.228707416, r[5] = 3.513337092.
The first few rows of the T(n,k) array are, n>=1, 1 <= k <=5:
0, 0, 0, 0, 1, ...
1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, ...
5, 9, 12, 14, 15, ...
15, 29, 41, 50, 55, ...
55, 105, 146, 175, 190, ...
190, 365, 511, 616, 671, ... (End)
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Jay Kappraff, Slavik Jablan, Gary W. Adamson and Radmila Sazdanovich, Golden Fields, Generalized Fibonacci Sequences and Chaotic Matrices, Forma, Vol. 19 No. 4, pp. 367-387, 2004.
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31, MR 1439165
- Eric Weisstein's World of Mathematics, Hendecagon.
- Index entries for linear recurrences with constant coefficients, signature (3,3,-4,-1,1).
Cf.
A006358 (T(n+2,1) and T(n+1,5)),
A069006 (T(n+1,2)),
A038342 (T(n+1,3)), this sequence (T(n,4)) (m=5: hendecagon or 11-gon).
-
R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x^2*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) )); // G. C. Greubel, Nov 13 2022
-
nmax:=27: m:=5: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/3 do seq(T(n,k), k=1..m) od; for n from 1 to nmax do a(n):=T(n,4) od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Aug 03 2011
-
LinearRecurrence[{3, 3, -4, -1, 1}, {0, 1, 4, 14, 50}, 41] (* G. C. Greubel, Nov 13 2022 *)
-
def A120747_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) ).list()
A120747_list(40) # G. C. Greubel, Nov 13 2022
A123609
Quasiperiodic 9-gonal (nonagonal) sequence as a 1-dimensional tiling.
Original entry on oeis.org
4, 1, 2, 3, 4, 4, 3, 4, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 2, 3, 4, 1, 2, 3, 4, 3, 4, 2, 3, 4, 1, 2, 3, 4, 4, 3, 4, 2, 3, 4, 1, 2, 3, 4
Offset: 1
1=>4, then 4=>1,2,3,4, which, in turn, generates 4,3,4,2,3,4,1,2,3,4 (append next result to right of previous result, getting an infinite aperiodic sequence).
-
Drop[SubstitutionSystem[{1->{4},2->{3,4},3->{2,3,4},4->{1,2,3,4}},{1},{5}][[1]],5] (* Harvey P. Dale, Mar 02 2022 *)
A069005
Let M = 4 X 4 matrix with rows /1,1,1,1/1,1,1,0/1,1,0,0/1,0,0,0/ and A(n) = vector (x(n),y(n),z(n),t(n)) = M^n*A where A is the vector (1,1,1,1); then a(n)=z(n).
Original entry on oeis.org
1, 7, 19, 56, 160, 462, 1329, 3828, 11021, 31735, 91376, 263108, 757588, 2181389, 6281058, 18085587, 52075371, 149945056, 431749580, 1243173370, 3579575053, 10306975580, 29677753369, 85453685055, 246054079584, 708484485384
Offset: 1
-
CoefficientList[Series[x (-x^4 - 2 x^3 + 2 x^2 + 5 x + 1)/((1 + x) (1 - 3 x + x^3)), {x, 0, 40}], x] (* Georg Fischer, May 24 2019 *)
Showing 1-5 of 5 results.
Comments