A072341 a(n) = the least natural number k such that k*sigma(n) + 1 is prime.
1, 2, 1, 4, 1, 1, 2, 2, 4, 1, 1, 1, 2, 3, 3, 10, 1, 2, 2, 1, 3, 1, 3, 1, 10, 1, 1, 2, 1, 1, 3, 2, 2, 2, 2, 6, 5, 1, 2, 2, 1, 1, 2, 4, 1, 1, 2, 3, 4, 4, 1, 2, 2, 2, 1, 2, 3, 2, 1, 2, 5, 1, 3, 4, 4, 3, 2, 1, 1, 3, 1, 6, 2, 2, 3, 2, 1, 2, 3, 2, 6, 1, 4, 2, 1, 3, 2, 1, 2, 4, 1, 2, 2, 3, 2, 3, 2, 12, 1, 6, 1, 2, 3
Offset: 1
Keywords
Examples
sigma(4) = 7 and the least natural number k such that 7 k + 1 is prime is k = 4; so a(4) = 4.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
f[n_] := Module[{i}, i = 0; While[ ! PrimeQ[i*DivisorSigma[1, n] + 1], i++ ]; i]; Table[f[i], {i, 1, 150}]
-
PARI
A072341(n) = { my(k=1,s=sigma(n)); while(!isprime(1+(k*s)),k++); k; }; \\ Antti Karttunen, Nov 07 2017
Comments