cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072360 One-sixth the area of the smallest primitive d-arithmetic triangle, where d=A072330(n).

Original entry on oeis.org

1, 26, 21, 91, 95, 196, 341, 536, 790, 259, 559, 1030, 654, 2926, 549, 4029, 1241, 4706, 5529, 5335, 1729, 1001, 1544, 2786, 9324, 12649, 4446, 8645, 9591, 1651, 3059, 10234, 3010, 3925, 19005, 2535, 16676, 14174, 8074, 25620, 33205, 8060
Offset: 1

Views

Author

Lekraj Beedassy, Jul 18 2002

Keywords

Comments

Such a triangle has middle side 2*x'.

Crossrefs

Programs

  • Mathematica
    terms = 1000;
    nmax = 12 terms;
    okQ[n_] := AllTrue[FactorInteger[n][[All, 1]], MatchQ[Mod[#, 12], 1|11]&];
    A072330 = Select[Range[nmax], okQ];
    a[n_] := Module[{a, b, c, d, p, area}, d = If[n <= Length[A072330], A072330[[n]], Print["nmax = ", nmax, " insufficient"]; Exit[]]; If[n == 1, 1, For[b = 2 d, True, b++, a = b - d; c = b + d; p = (a + b + c)/2; If[IntegerQ[p] && IntegerQ[area = Sqrt[p (p - a) (p - b) (p - c)]] && GCD[a, b, c] == 1, Return[area/6]]]]];
    a /@ Range[terms] (* Jean-François Alcover, Mar 07 2020 *)

Formula

a(n) = x'*y'/2, where (x', y') is the fundamental solution to x^2 - 3*y^2 = d^2, where d=A072330(n).

Extensions

Edited, corrected and extended by Ray Chandler, Jul 03 2004