A072400 (Factors of 4 removed from n) modulo 8.
1, 2, 3, 1, 5, 6, 7, 2, 1, 2, 3, 3, 5, 6, 7, 1, 1, 2, 3, 5, 5, 6, 7, 6, 1, 2, 3, 7, 5, 6, 7, 2, 1, 2, 3, 1, 5, 6, 7, 2, 1, 2, 3, 3, 5, 6, 7, 3, 1, 2, 3, 5, 5, 6, 7, 6, 1, 2, 3, 7, 5, 6, 7, 1, 1, 2, 3, 1, 5, 6, 7, 2, 1, 2, 3, 3, 5, 6, 7, 5, 1, 2, 3, 5, 5, 6, 7, 6, 1, 2, 3, 7, 5, 6, 7, 6
Offset: 1
Examples
From _Michael De Vlieger_, May 08 2017: (Start) a(4) = 1 since 4 = 1 * 4^1 and 4 / 4^1 = 1; 1 = 1 (mod 8). a(5) = 5 since it is not a multiple of 4; 5 = 5 (mod 8). a(12) = 3 since 12 = 3 * 4^1 and 12 / 4^1 = 3; 3 = 3 (mod 8). a(44) = 3 since 44 = 11 * 4^1 and 44 / 4^1 = 11; 3 = 11 (mod 8). a(64) = 1 since 64 = 1 * 4^3 and 64 / 4^3 = 1; 1 = 1 (mod 8). (End)
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Square Numbers.
Programs
-
Mathematica
Array[Mod[If[Mod[#, 4] == 0, #/4^IntegerExponent[#, 4], #], 8] &, 96] (* Michael De Vlieger, May 08 2017 *)
-
PARI
a(n) = (n >> (2*valuation(n, 4))) % 8; \\ Amiram Eldar, May 15 2025
-
Python
def A072400(n): return (n>>((~n&n-1).bit_length()&-2))&7 # Chai Wah Wu, Aug 01 2023
Formula
a(n) = A065883(n) mod 8.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4. - Amiram Eldar, May 15 2025
Extensions
Offset corrected (from 0 to 1) by Antti Karttunen, May 08 2017
Comments