A072405 Triangle T(n, k) = C(n,k) - C(n-2,k-1) for n >= 3 and T(n, k) = 1 otherwise, read by rows.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 4, 3, 1, 1, 4, 7, 7, 4, 1, 1, 5, 11, 14, 11, 5, 1, 1, 6, 16, 25, 25, 16, 6, 1, 1, 7, 22, 41, 50, 41, 22, 7, 1, 1, 8, 29, 63, 91, 91, 63, 29, 8, 1, 1, 9, 37, 92, 154, 182, 154, 92, 37, 9, 1, 1, 10, 46, 129, 246, 336, 336, 246, 129, 46, 10, 1, 1, 11, 56, 175, 375, 582, 672, 582, 375, 175, 56, 11, 1
Offset: 0
Examples
Rows start as: 1; 1, 1; 1, 1, 1; (key row for starting the recurrence) 1, 2, 2, 1; 1, 3, 4, 3, 1; 1, 4, 7, 7, 4, 1; 1, 5, 11, 14, 11, 5, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
Crossrefs
Programs
-
Magma
T:= func< n,k | n lt 3 select 1 else Binomial(n,k) - Binomial(n-2,k-1) >; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 28 2021
-
Mathematica
t[2, 1] = 1; t[n_, n_] = t[, 0] = 1; t[n, k_] := t[n, k] = t[n-1, k-1] + t[n-1, k]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 28 2013, after Ralf Stephan *)
-
PARI
A072405(n, k) = if(n>2, binomial(n, k)-binomial(n-2, k-1), 1) \\ M. F. Hasler, Jan 06 2024
-
Sage
def T(n,k): return 1 if n<3 else binomial(n,k) - binomial(n-2,k-1) flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 28 2021
Formula
T(n, k) = C(n,k) - C(n-2,k-1) for n >= 3 and T(n, k) = 1 otherwise.
T(n, k) = T(n-1, k-1) + T(n-1, k) starting with T(2, 0) = T(2, 1) = T(2, 2) = 1 and T(n, 0) = T(n, n) = 1.
G.f.: (1-x^2*y) / (1 - x*(1+y)). - Ralf Stephan, Jan 31 2005
From G. C. Greubel, Apr 28 2021: (Start)
Sum_{k=0..n} T(n, k) = (n+1)*[n<3] + 3*2^(n-2)*[n>=3].
T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = -1. (End)
Comments