cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A006355 Number of binary vectors of length n containing no singletons.

Original entry on oeis.org

1, 0, 2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634
Offset: 0

Views

Author

David M. Bloom

Keywords

Comments

Number of cvtemplates at n-2 letters given <= 2 consecutive consonants or vowels (n >= 4).
Number of (n,2) Freiman-Wyner sequences.
Diagonal sums of the Riordan array ((1-x+x^2)/(1-x), x/(1-x)), A072405 (where this begins 1,0,1,1,1,1,...). - Paul Barry, May 04 2005
Central terms of the triangle in A094570. - Reinhard Zumkeller, Mar 22 2011
Pisano period lengths: 1, 1, 8, 3, 20, 8, 16, 6, 24, 20, 10, 24, 28, 16, 40, 12, 36, 24, 18, 60, ... . - R. J. Mathar, Aug 10 2012
Also the number of matchings in the (n-2)-pan graph for n >= 5. - Eric W. Weisstein, Oct 03 2017
a(n) is the number of bimultus bitstrings of length n. A bitstring is bimultus if each of its 1's possess at least one neighboring 1 and each of its 0's possess at least one neighboring 0. - Steven Finch, May 26 2020

Examples

			a(6)=10 because we have: 000000, 000011, 000111, 001100, 001111, 110000, 110011, 111000, 111100, 111111. - _Geoffrey Critzer_, Jan 26 2014
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 16, 51.

Crossrefs

Except for initial term, = 2*Fibonacci numbers (A000045).
Essentially the same as A047992, A054886, A055389, A068922, and A090991.
Column 2 in A265584.

Programs

  • Haskell
    a006355 n = a006355_list !! n
    a006355_list = 1 : fib2s where
       fib2s = 0 : map (+ 1) (scanl (+) 1 fib2s)
    -- Reinhard Zumkeller, Mar 20 2013
    
  • Magma
    [1] cat [Lucas(n) - Fibonacci(n): n in [1..50]]; // Vincenzo Librandi, Aug 02 2014
    
  • Maple
    a:= n-> if n=0 then 1 else (Matrix([[2,-2]]). Matrix([[1,1], [1,0]])^n) [1,1] fi: seq(a(n), n=0..38); # Alois P. Heinz, Aug 18 2008
    a := n -> ifelse(n=0, 1, -2*I^n*ChebyshevU(n-2, -I/2)):
    seq(simplify(a(n)), n = 0..38);  # Peter Luschny, Dec 03 2023
  • Mathematica
    Join[{1}, Last[#] - First[#] & /@ Partition[Fibonacci[Range[-1, 40]], 4, 1]] (* Harvey P. Dale, Sep 30 2011 *)
    Join[{1}, LinearRecurrence[{1, 1}, {0, 2}, 38]] (* Jean-François Alcover, Sep 23 2017 *)
    (* Programs from Eric W. Weisstein, Oct 03 2017 *)
    Join[{1}, Table[2 Fibonacci[n], {n, 0, 40}]]
    Join[{1}, 2 Fibonacci[Range[0, 40]]]
    CoefficientList[Series[(1-x+x^2)/(1-x-x^2), {x, 0, 40}], x] (* End *)
  • PARI
    a(n)=if(n,2*fibonacci(n-1),1) \\ Charles R Greathouse IV, Mar 14 2012
    
  • PARI
    my(x='x+O('x^50)); Vec((1-x+x^2)/(1-x-x^2)) \\ Altug Alkan, Nov 01 2015
    
  • SageMath
    def A006355(n): return 2*fibonacci(n-1) - int(n==0)
    print([A006355(n) for n in range(51)]) # G. C. Greubel, Apr 18 2025

Formula

a(n+2) = F(n-1) + F(n+2), for n > 0.
G.f.: (1-x+x^2)/(1-x-x^2). - Paul Barry, May 04 2005
a(n) = A119457(n-1,n-2) for n > 2. - Reinhard Zumkeller, May 20 2006
a(n) = 2*F(n-1) for n > 0, F(n)=A000045(n) and a(0)=1. - Mircea Merca, Jun 28 2012
G.f.: 1 - x + x*Q(0), where Q(k) = 1 + x^2 + (2*k+3)*x - x*(2*k+1 + x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
a(n) = A118658(n) - 0^n. - M. F. Hasler, Nov 05 2014
a(n) = 2^(-n)*((1+r)*(1-r)^n - (1-r)*(1+r)^n)/r for n > 0, where r=sqrt(5). - Colin Barker, Jan 28 2017
a(n) = a(n-1) + a(n-2) for n >= 3. - Armend Shabani, Nov 25 2020
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) - sqrt(5)*sinh(sqrt(5)*x/2))/5 - 1. - Stefano Spezia, Apr 18 2022
a(n) = F(n-3) + F(n-2) + F(n-1) for n >= 3, where F(n)=A000045(n). - Gergely Földvári, Aug 03 2024

Extensions

Corrected by T. D. Noe, Oct 31 2006

A028262 Elements in 3-Pascal triangle (by row).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 8, 5, 1, 1, 6, 13, 13, 6, 1, 1, 7, 19, 26, 19, 7, 1, 1, 8, 26, 45, 45, 26, 8, 1, 1, 9, 34, 71, 90, 71, 34, 9, 1, 1, 10, 43, 105, 161, 161, 105, 43, 10, 1, 1, 11, 53, 148, 266, 322, 266, 148, 53, 11, 1, 1, 12, 64, 201, 414, 588, 588, 414, 201, 64, 12, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
  1;
  1 1;
  1 3 1;
  1 4 4 1;
  1 5 8 5 1;
  ...
		

Crossrefs

Programs

  • Haskell
    a028262 n k = a028262_tabl !! n !! k
    a028262_row n = a028262_tabl !! n
    a028262_tabl = [1] : [1,1] : iterate
       (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1,3,1]
    -- Reinhard Zumkeller, Aug 02 2012
    
  • Magma
    T:= func< n,k | n lt 2 select 1 else Binomial(n, k) + Binomial(n-2, k-1) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 28 2021
    
  • Mathematica
    T[n_, k_]:= If[n==1, 1, Binomial[n, k] + Binomial[n-2, k-1]]; Table[T[n, k], {n, 0, 11}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jan 28 2015 *)
  • Sage
    def T(n,k): return 1 if n<2 else binomial(n,k) + binomial(n-2,k-1)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 28 2021

Formula

After the 3rd row, use Pascal's rule.
From Ralf Stephan, Jan 31 2005: (Start)
T(n, k) = C(n, k) + C(n-2, k-1).
G.f.: (1 + x^2*y)/(1 - x*(1+y)). (End)
T(n+2,k+1) = A007318(n,k) - A007318(n+2,k+1); 0 < k < n. - Reinhard Zumkeller, Aug 02 2012
Sum_{k=0..n} T(n,k) = (n+1)*[n<2] + 5*2^(n-2)*[n>=2]. - G. C. Greubel, Apr 28 2021

Extensions

More terms from James Sellers

A051597 Rows of triangle formed using Pascal's rule except begin and end n-th row with n+1.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 4, 7, 7, 4, 5, 11, 14, 11, 5, 6, 16, 25, 25, 16, 6, 7, 22, 41, 50, 41, 22, 7, 8, 29, 63, 91, 91, 63, 29, 8, 9, 37, 92, 154, 182, 154, 92, 37, 9, 10, 46, 129, 246, 336, 336, 246, 129, 46, 10, 11, 56, 175, 375, 582, 672, 582, 375, 175, 56, 11
Offset: 0

Views

Author

Keywords

Comments

Row sums give A033484(n).
The number of spotlight tilings of an (m+1) X (n+1) rectangle, read by antidiagonals. - Bridget Tenner, Nov 09 2007
T(n,k) = A134636(n,k) - A051601(n,k). - Reinhard Zumkeller, Nov 23 2012
T(n,k) = A209561(n+2,k+1), 0 <= k <= n. - Reinhard Zumkeller, Dec 26 2012
For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 19 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013

Examples

			Triangle begins as:
  1;
  2,  2;
  3,  4,  3;
  4,  7,  7,  4;
  5, 11, 14, 11, 5;
		

Crossrefs

Stripped variant of A072405, A122218.

Programs

  • GAP
    T:= function(n,k)
        if k<0 or k>n then return 0;
        elif k=0 or k=n then return n+1;
        else return T(n-1,k-1) + T(n-1,k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
  • Haskell
    a051597 n k = a051597_tabl !! n !! k
    a051597_row n = a051597_tabl !! n
    a051597_tabl = iterate (\row -> zipWith (+) ([1] ++ row) (row ++ [1])) [1]
    -- Reinhard Zumkeller, Nov 23 2012
    
  • Magma
    function T(n,k)
        if k lt 0 or k gt n then return 0;
      elif k eq 0 or k eq n then return n+1;
      else return T(n-1,k-1) + T(n-1,k);
      end if;
      return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 18 2019
    
  • Maple
    T:= proc(n, k) option remember;
          `if`(k<0 or k>n, 0,
          `if`(k=0 or k=n, n+1,
             T(n-1, k-1) + T(n-1, k) ))
        end:
    seq(seq(T(n, k), k=0..n), n=0..14);  # Alois P. Heinz, May 27 2013
  • Mathematica
    NestList[Append[ Prepend[Map[Apply[Plus, #] &, Partition[#, 2, 1]], #[[1]] + 1], #[[1]] + 1] &, {1}, 10] // Grid  (* Geoffrey Critzer, May 26 2013 *)
    T[n_, k_] := T[n, k] = If[k<0 || k>n, 0, If[k==0 || k==n, n+1, T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 09 2016, after Alois P. Heinz *)
  • PARI
    T(n,k) = if(k<0 || k>n, 0, if(k==0 || k==n, n+1, T(n-1, k-1) + T(n-1, k) ));
    for(n=0, 12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Nov 18 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==0 or k==n): return n+1
        else: return T(n-1, k-1) + T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 18 2019
    

Formula

T(2n,n) = A051924(n+1). - Philippe Deléham, Nov 26 2006
T(m,n) = binomial(m+n,m) - binomial(m+n-2,m-1) (correct up to offset and transformation of square indices to triangular indices). - Bridget Tenner, Nov 09 2007
T(0,n) = T(n,0) = n+1, T(n,k) = T(n-1,k) + T(n-1,k-1), 0 < k < n.
From Peter Bala, Feb 28 2013: (Start)
T(n,k) = binomial(n,k-1) + binomial(n,k) + binomial(n,k+1) for 0 <= k <= n.
O.g.f.: (1 - xt^2)/((1 - t)(1 - xt)(1 - (1+x)t)) = 1 + (2 + 2x)t + (3 + 4x + 3x^2)t^2 + ....
Row polynomials: ((1+x+x^2)*(1+x)^n - 1 - x^(n+2))/x. (End)

A173117 Triangle T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 8, 5, 1, 1, 6, 14, 14, 6, 1, 1, 7, 20, 28, 20, 7, 1, 1, 8, 27, 49, 49, 27, 8, 1, 1, 9, 35, 76, 98, 76, 35, 9, 1, 1, 10, 44, 111, 175, 175, 111, 44, 10, 1, 1, 11, 54, 155, 286, 350, 286, 155, 54, 11, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 10 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  3,  1;
  1,  4,  4,   1;
  1,  5,  8,   5,   1;
  1,  6, 14,  14,   6,   1;
  1,  7, 20,  28,  20,   7,   1;
  1,  8, 27,  49,  49,  27,   8,   1;
  1,  9, 35,  76,  98,  76,  35,   9,  1;
  1, 10, 44, 111, 175, 175, 111,  44, 10,  1;
  1, 11, 54, 155, 286, 350, 286, 155, 54, 11, 1;
		

Crossrefs

Cf. A007318 (q=0), A072405 (q= -1), this sequence (q=1), A173118 (q=2), A173119 (q=3), A173120 (q= -4), A173122.

Programs

  • Mathematica
    T[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j]*Boole[n>2*j], {j,0,5}]];
    Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
  • Sage
    @CachedFunction
    def T(n,k,q): return 1 if (k==0 or k==n) else q*bool(n==2) + sum( q^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) )
    flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 27 2021

Formula

T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 1.
Sum_{k=0..n} T(n, k, q) = [n=0] + q*[n=2] + Sum_{j=0..5} q^j*2^(n-2*j)*[n > 2*j] for q = 1. - G. C. Greubel, Apr 27 2021

Extensions

Edited by G. C. Greubel, Apr 27 2021

A173118 Triangle T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 6, 10, 6, 1, 1, 7, 20, 20, 7, 1, 1, 8, 27, 40, 27, 8, 1, 1, 9, 35, 75, 75, 35, 9, 1, 1, 10, 44, 110, 150, 110, 44, 10, 1, 1, 11, 54, 154, 276, 276, 154, 54, 11, 1, 1, 12, 65, 208, 430, 552, 430, 208, 65, 12, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 10 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  4,  1;
  1,  5,  5,   1;
  1,  6, 10,   6,   1;
  1,  7, 20,  20,   7,   1;
  1,  8, 27,  40,  27,   8,   1;
  1,  9, 35,  75,  75,  35,   9,   1;
  1, 10, 44, 110, 150, 110,  44,  10,  1;
  1, 11, 54, 154, 276, 276, 154,  54, 11,  1;
  1, 12, 65, 208, 430, 552, 430, 208, 65, 12, 1;
		

Crossrefs

Cf. A007318 (q=0), A072405 (q= -1), A173117 (q=1), this sequence (q=2), A173119 (q=3), A173120 (q= -4), A173122.

Programs

  • Mathematica
    T[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j]*Boole[n>2*j], {j,0,5}]];
    Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
  • Sage
    @CachedFunction
    def T(n,k,q): return 1 if (k==0 or k==n) else q*bool(n==2) + sum( q^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) )
    flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 27 2021

Formula

T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 2.
Sum_{k=0..n} T(n, k, q) = [n=0] + q*[n=2] + Sum_{j=0..5} q^j*2^(n-2*j)*[n > 2*j] for q = 2. - G. C. Greubel, Apr 27 2021

Extensions

Edited by G. C. Greubel, Apr 27 2021

A173119 Triangle T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 3, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 6, 6, 1, 1, 7, 12, 7, 1, 1, 8, 28, 28, 8, 1, 1, 9, 36, 56, 36, 9, 1, 1, 10, 45, 119, 119, 45, 10, 1, 1, 11, 55, 164, 238, 164, 55, 11, 1, 1, 12, 66, 219, 483, 483, 219, 66, 12, 1, 1, 13, 78, 285, 702, 966, 702, 285, 78, 13, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 10 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  5,  1;
  1,  6,  6,   1;
  1,  7, 12,   7,   1;
  1,  8, 28,  28,   8,   1;
  1,  9, 36,  56,  36,   9,   1;
  1, 10, 45, 119, 119,  45,  10,   1;
  1, 11, 55, 164, 238, 164,  55,  11,  1;
  1, 12, 66, 219, 483, 483, 219,  66, 12,  1;
  1, 13, 78, 285, 702, 966, 702, 285, 78, 13, 1;
		

Crossrefs

Cf. A007318 (q=0), A072405 (q= -1), A173117 (q=1), A173118 (q=2), this sequence (q=3), A173120 (q= -4), A173122.

Programs

  • Mathematica
    T[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j]*Boole[n>2*j], {j,0,5}]];
    Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
  • Sage
    @CachedFunction
    def T(n,k,q): return 1 if (k==0 or k==n) else q*bool(n==2) + sum( q^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) )
    flatten([[T(n,k,3) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Apr 27 2021

Formula

T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 3.
Sum_{k=0..n} T(n, k, q) = [n=0] + q*[n=2] + Sum_{j=0..5} q^j*2^(n-2*j)*[n > 2*j] for q = 3. - G. C. Greubel, Apr 27 2021

Extensions

Edited by G. C. Greubel, Apr 27 2021

A173120 Triangle T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = -4, read by rows.

Original entry on oeis.org

1, 1, 1, 1, -2, 1, 1, -1, -1, 1, 1, 0, -2, 0, 1, 1, 1, 14, 14, 1, 1, 1, 2, 15, 28, 15, 2, 1, 1, 3, 17, -21, -21, 17, 3, 1, 1, 4, 20, -4, -42, -4, 20, 4, 1, 1, 5, 24, 16, 210, 210, 16, 24, 5, 1, 1, 6, 29, 40, 226, 420, 226, 40, 29, 6, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 10 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1, -2,  1;
  1, -1, -1,   1;
  1,  0, -2,   0,   1;
  1,  1, 14,  14,   1,   1;
  1,  2, 15,  28,  15,   2,   1;
  1,  3, 17, -21, -21,  17,   3,  1;
  1,  4, 20,  -4, -42,  -4,  20,  4,  1;
  1,  5, 24,  16, 210, 210,  16, 24,  5, 1;
  1,  6, 29,  40, 226, 420, 226, 40, 29, 6, 1;
		

Crossrefs

Cf. A007318 (q=0), A072405 (q= -1), A173117 (q=1), A173118 (q=2), A173119 (q=3), this sequence (q= -4), A173122.

Programs

  • Mathematica
    T[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j]*Boole[n>2*j], {j,0,5}]];
    Table[T[n,k,-4], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
  • Sage
    @CachedFunction
    def T(n,k,q): return 1 if (k==0 or k==n) else q*bool(n==2) + sum( q^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) )
    flatten([[T(n,k,-4) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 27 2021

Formula

T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = -4.
Sum_{k=0..n} T(n, k, q) = [n=0] + q*[n=2] + Sum_{j=0..5} q^j*2^(n-2*j)*[n > 2*j] for q = -4. - G. C. Greubel, Apr 27 2021

Extensions

Edited by G. C. Greubel, Apr 27 2021

A163733 Number of n X 2 binary arrays with all 1's connected, all corners 1, and no 1 having more than two 1's adjacent.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338
Offset: 1

Views

Author

R. H. Hardin, Aug 03 2009

Keywords

Comments

Same recurrence for A163695.
Same recurrence for A163714.
Appears to coincide with diagonal sums of A072405. - Paul Barry, Aug 10 2009
From Gary W. Adamson, Sep 15 2016: (Start)
Let the sequence prefaced with a 1: (1, 1, 1, 2, 2, 4, 6, ...) equate to r(x). Then (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) = the Fibonacci sequence, (1, 1, 2, 3, 5, ...). Let M = the following production matrix:
1, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, ...
2, 1, 0, 0, 0, ...
2, 1, 1, 0, 0, ...
4, 2, 1, 0, 0, ...
6, 2, 1, 1, 0, ...
...
Limit of the matrix power M^k as k->infinity results in a single column vector equal to the Fibonacci sequence. (End)
Apparently a(n) = A128588(n-2) for n > 3. - Georg Fischer, Oct 14 2018

Examples

			All solutions for n=8:
   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1
   0 1   1 0   1 0   1 0   1 0   1 0   0 1   0 1   0 1   0 1
   0 1   1 0   1 0   1 0   1 1   1 0   0 1   0 1   1 1   0 1
   0 1   1 0   1 0   1 1   0 1   1 0   0 1   0 1   1 0   1 1
   0 1   1 0   1 1   0 1   0 1   1 0   0 1   1 1   1 0   1 0
   0 1   1 0   0 1   0 1   0 1   1 1   1 1   1 0   1 0   1 0
   0 1   1 0   0 1   0 1   0 1   0 1   1 0   1 0   1 0   1 0
   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1
------
   1 1   1 1   1 1   1 1   1 1   1 1
   0 1   0 1   0 1   1 0   1 0   1 0
   1 1   1 1   0 1   1 0   1 1   1 1
   1 0   1 0   1 1   1 1   0 1   0 1
   1 1   1 0   1 0   0 1   0 1   1 1
   0 1   1 1   1 1   1 1   1 1   1 0
   0 1   0 1   0 1   1 0   1 0   1 0
   1 1   1 1   1 1   1 1   1 1   1 1
		

Crossrefs

Programs

Formula

Empirical: a(n) = a(n-1) + a(n-2) for n >= 5.
G.f.: (1-x^3)/(1-x-x^2) (conjecture). - Paul Barry, Aug 10 2009
a(n) = round(phi^(k-1)) - round(phi^(k-1)/sqrt(5)), phi = (1 + sqrt(5))/2 (conjecture). - Federico Provvedi, Mar 26 2013
G.f.: 1 + 2*x - x*Q(0), where Q(k) = 1 + x^2 - (2*k+1)*x + x*(2*k-1 - x)/Q(k+1); (conjecture), (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
G.f.: If prefaced with a 1, (1, 1, 1, 2, 2, 4, ...): (1 - x^2 - x^4)/(1 - x - x^2); where the modified sequence satisfies A(x)/A(x^2), A(x) is the Fibonacci sequence. - Gary W. Adamson, Sep 15 2016

A173122 Irregular triangle T(n) = coefficients of Sum_{k=0..n} t(n,k,q) for powers of q, where t(n,k,q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with t(n,0,q) = t(n,n,q) = 1, read by rows.

Original entry on oeis.org

1, 2, 4, 1, 8, 2, 16, 4, 32, 8, 2, 64, 16, 4, 128, 32, 8, 2, 256, 64, 16, 4, 512, 128, 32, 8, 2, 1024, 256, 64, 16, 4, 2048, 512, 128, 32, 8, 2, 4096, 1024, 256, 64, 16, 4, 8192, 2048, 512, 128, 32, 8, 16384, 4096, 1024, 256, 64, 16, 32768, 8192, 2048, 512, 128, 32, 65536, 16384, 4096, 1024, 256, 64
Offset: 0

Views

Author

Roger L. Bagula, Feb 10 2010

Keywords

Examples

			Irregular triangle begins as:
     1;
     2;
     4,   1;
     8,   2;
    16,   4;
    32,   8,  2;
    64,  16,  4;
   128,  32,  8,  2;
   256,  64, 16,  4;
   512, 128, 32,  8, 2;
  1024, 256, 64, 16, 4;
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j] *Boole[n>2*j], {j, 0, 5}]];
    T[n_]:= CoefficientList[Series[Sum[t[n,k,q], {k,0,n}], {q,0,n}], q];
    Table[T[n], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Apr 29 2021 *)
  • Sage
    @CachedFunction
    def t(n, k, x): return 1 if (k==0 or k==n) else x*bool(n==2) + sum( x^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) )
    def s(n,x): return sum( t(n,k,x) for k in (0..n) )
    flatten([taylor(s(n,x), x, 0, n).list() for n in (0..12)]) # G. C. Greubel, Apr 29 2021

Formula

T(n) = coefficients of Sum_{k=0..n} t(n,k,q) for powers of q, where t(n,k,q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with t(n,0,q) = t(n,n,q) = 1.

Extensions

More terms and edited by G. C. Greubel, Apr 29 2021

A106509 Riordan array ((1+x)/(1+x+x^2), x/(1+x)), read by rows.

Original entry on oeis.org

1, 0, 1, -1, -1, 1, 1, 0, -2, 1, 0, 1, 2, -3, 1, -1, -1, -1, 5, -4, 1, 1, 0, 0, -6, 9, -5, 1, 0, 1, 0, 6, -15, 14, -6, 1, -1, -1, 1, -6, 21, -29, 20, -7, 1, 1, 0, -2, 7, -27, 50, -49, 27, -8, 1, 0, 1, 2, -9, 34, -77, 99, -76, 35, -9, 1, -1, -1, -1, 11, -43, 111, -176, 175, -111, 44, -10, 1
Offset: 0

Views

Author

Paul Barry, May 04 2005

Keywords

Comments

Row sums are A106510.
Diagonal sums are A106511.
Inverse of A072405 (when this starts 1, 0, 1, ...).

Examples

			Triangle begins:
   1;
   0,  1;
  -1, -1,  1;
   1,  0, -2,  1;
   0,  1,  2, -3,  1;
  -1, -1, -1,  5, -4,  1;
		

Crossrefs

Programs

  • Magma
    T:= func< n,k | (&+[ (-1)^j*Binomial(2*n-k-j, j): j in [0..n-k]]) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 28 2021
    
  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[(1 + #)/(1 + # + #^2)&, #/(1 + #)&, 12] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
  • Sage
    def T(n,k): return sum( (-1)^j*binomial(2*n-k-j, j) for j in (0..n-k))
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 28 2021

Formula

T(n, k) = Sum_{j=0..n-k} (-1)^j*binomial(2n-k-j, j).
T(n,k) = T(n-1,k-1) - 2*T(n-1,k) + T(n-2,k-1) - 2*T(n-2,k) + T(n-3,k-1) - T(n-3,k), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = 0, T(2,1) = T(2,0) = -1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 12 2014
Sum_{k=0..n} T(n,k) = A106510(n). - G. C. Greubel, Apr 28 2021
Showing 1-10 of 14 results. Next