A173117
Triangle T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 8, 5, 1, 1, 6, 14, 14, 6, 1, 1, 7, 20, 28, 20, 7, 1, 1, 8, 27, 49, 49, 27, 8, 1, 1, 9, 35, 76, 98, 76, 35, 9, 1, 1, 10, 44, 111, 175, 175, 111, 44, 10, 1, 1, 11, 54, 155, 286, 350, 286, 155, 54, 11, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 4, 4, 1;
1, 5, 8, 5, 1;
1, 6, 14, 14, 6, 1;
1, 7, 20, 28, 20, 7, 1;
1, 8, 27, 49, 49, 27, 8, 1;
1, 9, 35, 76, 98, 76, 35, 9, 1;
1, 10, 44, 111, 175, 175, 111, 44, 10, 1;
1, 11, 54, 155, 286, 350, 286, 155, 54, 11, 1;
-
T[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j]*Boole[n>2*j], {j,0,5}]];
Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
-
@CachedFunction
def T(n,k,q): return 1 if (k==0 or k==n) else q*bool(n==2) + sum( q^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) )
flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 27 2021
A173118
Triangle T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 6, 10, 6, 1, 1, 7, 20, 20, 7, 1, 1, 8, 27, 40, 27, 8, 1, 1, 9, 35, 75, 75, 35, 9, 1, 1, 10, 44, 110, 150, 110, 44, 10, 1, 1, 11, 54, 154, 276, 276, 154, 54, 11, 1, 1, 12, 65, 208, 430, 552, 430, 208, 65, 12, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 4, 1;
1, 5, 5, 1;
1, 6, 10, 6, 1;
1, 7, 20, 20, 7, 1;
1, 8, 27, 40, 27, 8, 1;
1, 9, 35, 75, 75, 35, 9, 1;
1, 10, 44, 110, 150, 110, 44, 10, 1;
1, 11, 54, 154, 276, 276, 154, 54, 11, 1;
1, 12, 65, 208, 430, 552, 430, 208, 65, 12, 1;
-
T[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j]*Boole[n>2*j], {j,0,5}]];
Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
-
@CachedFunction
def T(n,k,q): return 1 if (k==0 or k==n) else q*bool(n==2) + sum( q^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) )
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 27 2021
A173119
Triangle T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 6, 6, 1, 1, 7, 12, 7, 1, 1, 8, 28, 28, 8, 1, 1, 9, 36, 56, 36, 9, 1, 1, 10, 45, 119, 119, 45, 10, 1, 1, 11, 55, 164, 238, 164, 55, 11, 1, 1, 12, 66, 219, 483, 483, 219, 66, 12, 1, 1, 13, 78, 285, 702, 966, 702, 285, 78, 13, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 6, 6, 1;
1, 7, 12, 7, 1;
1, 8, 28, 28, 8, 1;
1, 9, 36, 56, 36, 9, 1;
1, 10, 45, 119, 119, 45, 10, 1;
1, 11, 55, 164, 238, 164, 55, 11, 1;
1, 12, 66, 219, 483, 483, 219, 66, 12, 1;
1, 13, 78, 285, 702, 966, 702, 285, 78, 13, 1;
-
T[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j]*Boole[n>2*j], {j,0,5}]];
Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
-
@CachedFunction
def T(n,k,q): return 1 if (k==0 or k==n) else q*bool(n==2) + sum( q^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) )
flatten([[T(n,k,3) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Apr 27 2021
A173120
Triangle T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = -4, read by rows.
Original entry on oeis.org
1, 1, 1, 1, -2, 1, 1, -1, -1, 1, 1, 0, -2, 0, 1, 1, 1, 14, 14, 1, 1, 1, 2, 15, 28, 15, 2, 1, 1, 3, 17, -21, -21, 17, 3, 1, 1, 4, 20, -4, -42, -4, 20, 4, 1, 1, 5, 24, 16, 210, 210, 16, 24, 5, 1, 1, 6, 29, 40, 226, 420, 226, 40, 29, 6, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, -2, 1;
1, -1, -1, 1;
1, 0, -2, 0, 1;
1, 1, 14, 14, 1, 1;
1, 2, 15, 28, 15, 2, 1;
1, 3, 17, -21, -21, 17, 3, 1;
1, 4, 20, -4, -42, -4, 20, 4, 1;
1, 5, 24, 16, 210, 210, 16, 24, 5, 1;
1, 6, 29, 40, 226, 420, 226, 40, 29, 6, 1;
-
T[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j]*Boole[n>2*j], {j,0,5}]];
Table[T[n,k,-4], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
-
@CachedFunction
def T(n,k,q): return 1 if (k==0 or k==n) else q*bool(n==2) + sum( q^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) )
flatten([[T(n,k,-4) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 27 2021
Showing 1-4 of 4 results.