cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A072405 Triangle T(n, k) = C(n,k) - C(n-2,k-1) for n >= 3 and T(n, k) = 1 otherwise, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 4, 3, 1, 1, 4, 7, 7, 4, 1, 1, 5, 11, 14, 11, 5, 1, 1, 6, 16, 25, 25, 16, 6, 1, 1, 7, 22, 41, 50, 41, 22, 7, 1, 1, 8, 29, 63, 91, 91, 63, 29, 8, 1, 1, 9, 37, 92, 154, 182, 154, 92, 37, 9, 1, 1, 10, 46, 129, 246, 336, 336, 246, 129, 46, 10, 1, 1, 11, 56, 175, 375, 582, 672, 582, 375, 175, 56, 11, 1
Offset: 0

Views

Author

Henry Bottomley, Jun 16 2002

Keywords

Comments

Starting 1,0,1,1,1,... this is the Riordan array ((1-x+x^2)/(1-x), x/(1-x)). Its diagonal sums are A006355. Its inverse is A106509. - Paul Barry, May 04 2005

Examples

			Rows start as:
  1;
  1, 1;
  1, 1,  1; (key row for starting the recurrence)
  1, 2,  2,  1;
  1, 3,  4,  3,  1;
  1, 4,  7,  7,  4, 1;
  1, 5, 11, 14, 11, 5, 1;
		

Crossrefs

Row sums give essentially A003945, A007283, or A042950.
Cf. A072406 for number of odd terms in each row.
Cf. A051597, A096646, A122218 (identical for n > 1).
Cf. A007318 (q=0), A072405 (q= -1), A173117 (q=1), A173118 (q=2), A173119 (q=3), A173120 (q=-4).

Programs

  • Magma
    T:= func< n,k | n lt 3 select 1 else Binomial(n,k) - Binomial(n-2,k-1) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 28 2021
    
  • Mathematica
    t[2, 1] = 1; t[n_, n_] = t[, 0] = 1; t[n, k_] := t[n, k] = t[n-1, k-1] + t[n-1, k]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 28 2013, after Ralf Stephan *)
  • PARI
    A072405(n, k) = if(n>2, binomial(n, k)-binomial(n-2, k-1), 1) \\ M. F. Hasler, Jan 06 2024
  • Sage
    def T(n,k): return 1 if n<3 else binomial(n,k) - binomial(n-2,k-1)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 28 2021
    

Formula

T(n, k) = C(n,k) - C(n-2,k-1) for n >= 3 and T(n, k) = 1 otherwise.
T(n, k) = T(n-1, k-1) + T(n-1, k) starting with T(2, 0) = T(2, 1) = T(2, 2) = 1 and T(n, 0) = T(n, n) = 1.
G.f.: (1-x^2*y) / (1 - x*(1+y)). - Ralf Stephan, Jan 31 2005
From G. C. Greubel, Apr 28 2021: (Start)
Sum_{k=0..n} T(n, k) = (n+1)*[n<3] + 3*2^(n-2)*[n>=3].
T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = -1. (End)

A173117 Triangle T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 8, 5, 1, 1, 6, 14, 14, 6, 1, 1, 7, 20, 28, 20, 7, 1, 1, 8, 27, 49, 49, 27, 8, 1, 1, 9, 35, 76, 98, 76, 35, 9, 1, 1, 10, 44, 111, 175, 175, 111, 44, 10, 1, 1, 11, 54, 155, 286, 350, 286, 155, 54, 11, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 10 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  3,  1;
  1,  4,  4,   1;
  1,  5,  8,   5,   1;
  1,  6, 14,  14,   6,   1;
  1,  7, 20,  28,  20,   7,   1;
  1,  8, 27,  49,  49,  27,   8,   1;
  1,  9, 35,  76,  98,  76,  35,   9,  1;
  1, 10, 44, 111, 175, 175, 111,  44, 10,  1;
  1, 11, 54, 155, 286, 350, 286, 155, 54, 11, 1;
		

Crossrefs

Cf. A007318 (q=0), A072405 (q= -1), this sequence (q=1), A173118 (q=2), A173119 (q=3), A173120 (q= -4), A173122.

Programs

  • Mathematica
    T[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j]*Boole[n>2*j], {j,0,5}]];
    Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
  • Sage
    @CachedFunction
    def T(n,k,q): return 1 if (k==0 or k==n) else q*bool(n==2) + sum( q^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) )
    flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 27 2021

Formula

T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 1.
Sum_{k=0..n} T(n, k, q) = [n=0] + q*[n=2] + Sum_{j=0..5} q^j*2^(n-2*j)*[n > 2*j] for q = 1. - G. C. Greubel, Apr 27 2021

Extensions

Edited by G. C. Greubel, Apr 27 2021

A173118 Triangle T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 6, 10, 6, 1, 1, 7, 20, 20, 7, 1, 1, 8, 27, 40, 27, 8, 1, 1, 9, 35, 75, 75, 35, 9, 1, 1, 10, 44, 110, 150, 110, 44, 10, 1, 1, 11, 54, 154, 276, 276, 154, 54, 11, 1, 1, 12, 65, 208, 430, 552, 430, 208, 65, 12, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 10 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  4,  1;
  1,  5,  5,   1;
  1,  6, 10,   6,   1;
  1,  7, 20,  20,   7,   1;
  1,  8, 27,  40,  27,   8,   1;
  1,  9, 35,  75,  75,  35,   9,   1;
  1, 10, 44, 110, 150, 110,  44,  10,  1;
  1, 11, 54, 154, 276, 276, 154,  54, 11,  1;
  1, 12, 65, 208, 430, 552, 430, 208, 65, 12, 1;
		

Crossrefs

Cf. A007318 (q=0), A072405 (q= -1), A173117 (q=1), this sequence (q=2), A173119 (q=3), A173120 (q= -4), A173122.

Programs

  • Mathematica
    T[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j]*Boole[n>2*j], {j,0,5}]];
    Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
  • Sage
    @CachedFunction
    def T(n,k,q): return 1 if (k==0 or k==n) else q*bool(n==2) + sum( q^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) )
    flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 27 2021

Formula

T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 2.
Sum_{k=0..n} T(n, k, q) = [n=0] + q*[n=2] + Sum_{j=0..5} q^j*2^(n-2*j)*[n > 2*j] for q = 2. - G. C. Greubel, Apr 27 2021

Extensions

Edited by G. C. Greubel, Apr 27 2021

A173119 Triangle T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 3, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 6, 6, 1, 1, 7, 12, 7, 1, 1, 8, 28, 28, 8, 1, 1, 9, 36, 56, 36, 9, 1, 1, 10, 45, 119, 119, 45, 10, 1, 1, 11, 55, 164, 238, 164, 55, 11, 1, 1, 12, 66, 219, 483, 483, 219, 66, 12, 1, 1, 13, 78, 285, 702, 966, 702, 285, 78, 13, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 10 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  5,  1;
  1,  6,  6,   1;
  1,  7, 12,   7,   1;
  1,  8, 28,  28,   8,   1;
  1,  9, 36,  56,  36,   9,   1;
  1, 10, 45, 119, 119,  45,  10,   1;
  1, 11, 55, 164, 238, 164,  55,  11,  1;
  1, 12, 66, 219, 483, 483, 219,  66, 12,  1;
  1, 13, 78, 285, 702, 966, 702, 285, 78, 13, 1;
		

Crossrefs

Cf. A007318 (q=0), A072405 (q= -1), A173117 (q=1), A173118 (q=2), this sequence (q=3), A173120 (q= -4), A173122.

Programs

  • Mathematica
    T[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j]*Boole[n>2*j], {j,0,5}]];
    Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
  • Sage
    @CachedFunction
    def T(n,k,q): return 1 if (k==0 or k==n) else q*bool(n==2) + sum( q^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) )
    flatten([[T(n,k,3) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Apr 27 2021

Formula

T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 3.
Sum_{k=0..n} T(n, k, q) = [n=0] + q*[n=2] + Sum_{j=0..5} q^j*2^(n-2*j)*[n > 2*j] for q = 3. - G. C. Greubel, Apr 27 2021

Extensions

Edited by G. C. Greubel, Apr 27 2021

A173122 Irregular triangle T(n) = coefficients of Sum_{k=0..n} t(n,k,q) for powers of q, where t(n,k,q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with t(n,0,q) = t(n,n,q) = 1, read by rows.

Original entry on oeis.org

1, 2, 4, 1, 8, 2, 16, 4, 32, 8, 2, 64, 16, 4, 128, 32, 8, 2, 256, 64, 16, 4, 512, 128, 32, 8, 2, 1024, 256, 64, 16, 4, 2048, 512, 128, 32, 8, 2, 4096, 1024, 256, 64, 16, 4, 8192, 2048, 512, 128, 32, 8, 16384, 4096, 1024, 256, 64, 16, 32768, 8192, 2048, 512, 128, 32, 65536, 16384, 4096, 1024, 256, 64
Offset: 0

Views

Author

Roger L. Bagula, Feb 10 2010

Keywords

Examples

			Irregular triangle begins as:
     1;
     2;
     4,   1;
     8,   2;
    16,   4;
    32,   8,  2;
    64,  16,  4;
   128,  32,  8,  2;
   256,  64, 16,  4;
   512, 128, 32,  8, 2;
  1024, 256, 64, 16, 4;
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j] *Boole[n>2*j], {j, 0, 5}]];
    T[n_]:= CoefficientList[Series[Sum[t[n,k,q], {k,0,n}], {q,0,n}], q];
    Table[T[n], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Apr 29 2021 *)
  • Sage
    @CachedFunction
    def t(n, k, x): return 1 if (k==0 or k==n) else x*bool(n==2) + sum( x^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) )
    def s(n,x): return sum( t(n,k,x) for k in (0..n) )
    flatten([taylor(s(n,x), x, 0, n).list() for n in (0..12)]) # G. C. Greubel, Apr 29 2021

Formula

T(n) = coefficients of Sum_{k=0..n} t(n,k,q) for powers of q, where t(n,k,q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with t(n,0,q) = t(n,n,q) = 1.

Extensions

More terms and edited by G. C. Greubel, Apr 29 2021
Showing 1-5 of 5 results.