cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072451 Number of odd terms in the reduced residue system of 2*n-1.

Original entry on oeis.org

1, 1, 2, 3, 3, 5, 6, 4, 8, 9, 6, 11, 10, 9, 14, 15, 10, 12, 18, 12, 20, 21, 12, 23, 21, 16, 26, 20, 18, 29, 30, 18, 24, 33, 22, 35, 36, 20, 30, 39, 27, 41, 32, 28, 44, 36, 30, 36, 48, 30, 50, 51, 24, 53, 54, 36, 56, 44, 36, 48, 55, 40, 50, 63, 42, 65, 54, 36, 68, 69, 46, 60, 56
Offset: 1

Views

Author

Labos Elemer, Jun 19 2002

Keywords

Comments

Given the quasi-order and coach theorems of Hilton and Pedersen (cf. A003558): phi(b) = 2 * k * c with b odd. Dividing through by 2 we obtain phi(b)/2 = k * c which is the same as a(n) = A003558(n-1) * A135303(n-1). Here k refers to the "least exponent" (cf. A003558), while c is the number of coaches for odd b (cf. A135303). - Gary W. Adamson, Sep 25 2012
After the initial term, this is the totient function phi(2n-1)/2 (A037225(n-1)/2). Also a(n) is the number of partitions of the odd number (2n+1) into two ordered relatively prime parts. If p and q are such parts where p > q and p+q = 2n+1 then they can generate primitive Pythagorean triples of the form (p^2 - q^2, 2*p*q, p^2 + q^2). - Frank M Jackson, Oct 30 2012

Examples

			n=105: phi(105)=48 with 24 odd, 24 even; for even n=2k reduced residue system consists only of odd terms, so number of odd terms equals phi(n).
With odd integer 33, A072451(17) = 10 = A003558(16) * A135303(16); or 10 = 5 * 2.
		

References

  • Peter Hilton and Jean Pedersen, A Mathematical Tapestry, Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, 2010, p. 200.

Crossrefs

Programs

  • Maple
    A072451 := n -> ceil(numtheory:-phi(2*n-1)/2):
    seq(A072451(n), n=1..73); # Peter Luschny, Feb 24 2020
  • Mathematica
    gw[x_] := Table[GCD[x, w], {w, 1, x}] rrs[x_] := Flatten[Position[gw[x], 1]] Table[Count[OddQ[rrs[2*w-1]], True], {w, 1, 128}]
    (* Additional programs: *)
    Table[Count[Range[1, #, 2], k_ /; CoprimeQ[k, #]] &[2 n - 1], {n, 73}] (* or *) Array[If[# == 1, #, EulerPhi[2 # - 1]/2] &, 73] (* Michael De Vlieger, Jul 24 2017 *)
  • PARI
    A072451(n) = if(1==n,n,eulerphi(n+n-1)/2); \\ (After Benoit Cloitre's formula) - Antti Karttunen, Jul 24 2017

Formula

a(1) = 1, and for n > 1, a(n) = phi(2n-1)/2. - Benoit Cloitre, Oct 11 2002
It would appear that a(n) = Sum_{k=0..n} abs(Jacobi(k, 2n-2k+1)). - Paul Barry, Jul 20 2005
a(n) = A055034(2*n-1), n >= 1. - Wolfdieter Lang, Feb 07 2020
G.f.: (x + Sum_{n>=1} mu(2n-1) * x^n * (1 + x^(2n-1)) / (1 - x^(2n-1))^2) / 2. - Mamuka Jibladze, Dec 13 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = 4/Pi^2 = 0.405284... (A185199). - Amiram Eldar, Feb 11 2023