A072465 A Fibonacci-like model in which each pair of rabbits dies after the birth of their 4th litter: a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5).
1, 1, 1, 2, 3, 5, 7, 11, 17, 26, 40, 61, 94, 144, 221, 339, 520, 798, 1224, 1878, 2881, 4420, 6781, 10403, 15960, 24485, 37564, 57629, 88412, 135638, 208090, 319243, 489769, 751383, 1152740, 1768485, 2713135, 4162377, 6385743, 9796737
Offset: 0
Links
- N. T. Gridgeman, A New Look at Fibonacci Generalization, Fibonacci Quart., vol. 11 (1973), no. 1, 40-55.
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,1).
Crossrefs
Cf. A013982.
Programs
-
Maple
a:=proc(n,p,q) option remember: if n<=p then 1 elif n<=q then a(n-1,p,q)+a(n-p,p,q) else add(a(n-k,p,q),k=p..q) fi end: seq(a(n,2,5),n=0..100); # Robert FERREOL, Oct 05 2017
-
Mathematica
CoefficientList[ Series[(1 + x)/(1 - x^2 - x^3 - x^4 - x^5), {x, 0, 40}], x] LinearRecurrence[{0,1,1,1,1},{1,1,1,2,3},40] (* Harvey P. Dale, Sep 01 2014 *)
-
PARI
x='x+O('x^99); Vec((1+x)/(1-x^2-x^3-x^4-x^5)) \\ Altug Alkan, Oct 06 2017
Formula
a(n) = a(n-1) + a(n-2) - a(n-6);
G.f.: = (1 + x)/(1 - x^2 - x^3 - x^4 - x^5).
Comments