cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072481 a(n) = Sum_{k=1..n} Sum_{d=1..k} (k mod d).

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 9, 17, 25, 37, 50, 72, 89, 117, 148, 184, 220, 271, 318, 382, 443, 513, 590, 688, 773, 876, 988, 1113, 1237, 1388, 1526, 1693, 1860, 2044, 2241, 2459, 2657, 2890, 3138, 3407, 3665, 3962, 4246, 4571, 4899, 5238, 5596, 5999, 6373, 6787, 7207
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 02 2002

Keywords

Comments

Previous name was: Sums of sums of remainders when dividing n by k, 0
Partial sums of A004125.

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(0) to a(N)
    S:= series(add(k*x^(2*k)/(1-x^k),k=1..floor(N/2))/(1-x)^2, x, N+1):
    seq((n^3-n)/6 - coeff(S,x,n), n=0..N); # Robert Israel, Aug 13 2015
  • Mathematica
    a[n_] := n(n+1)(2n+1)/6 - Sum[DivisorSigma[1, k] (n-k+1), {k, 1, n}];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 08 2019, after Omar E. Pol *)
  • PARI
    a(n) = sum(k=1, n, sum(d=1, k, k % d)); \\ Michel Marcus, Feb 11 2014
  • Python
    for n in range(99):
        s = 0
        for k in range(1,n+1):
          for d in range(1,k+1):
            s += k % d
        print(str(s), end=',')
    
  • Python
    from math import isqrt
    def A072481(n): return (n*(n+1)*((n<<1)+1)-((s:=isqrt(n))**2*(s+1)*((s+1)*((s<<1)+1)-6*(n+1))>>1)-sum((q:=n//k)*(-k*(q+1)*(3*k+(q<<1)+1)+3*(n+1)*((k<<1)+q+1)) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 22 2023
    

Formula

a(n) = Sum_{k=1..n} Sum_{d=1..k}(k mod d).
a(n) = A000330(n) - A175254(n), n >= 1. - Omar E. Pol, Aug 12 2015
G.f.: x^2/(1-x)^4 - (1-x)^(-2) * Sum_{k>=1} k*x^(2*k)/(1-x^k). - Robert Israel, Aug 13 2015
a(n) ~ (1 - Pi^2/12)*n^3/3. - Vaclav Kotesovec, Sep 25 2016

Extensions

New name and a(0) from Alex Ratushnyak, Feb 10 2014