cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072558 Decimal expansion of the one-ninth constant.

Original entry on oeis.org

1, 0, 7, 6, 5, 3, 9, 1, 9, 2, 2, 6, 4, 8, 4, 5, 7, 6, 6, 1, 5, 3, 2, 3, 4, 4, 5, 0, 9, 0, 9, 4, 7, 1, 9, 0, 5, 8, 7, 9, 7, 6, 5, 6, 3, 2, 9, 0, 1, 1, 5, 0, 8, 6, 6, 9, 8, 5, 6, 8, 1, 4, 6, 9, 8, 1, 9, 2, 4, 3, 4, 1, 4, 6, 2, 6, 4, 2, 6, 4, 3, 4, 1, 2, 7, 7, 6, 1, 9, 9, 0, 4, 0, 9, 1, 5, 8, 7, 3, 1, 9, 2, 9, 6, 7
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

The generating function of A113184 equals 1/8 at q = Lambda = 0.1076539192... where K(k)=2E(k). - Michael Somos, Jul 21 2006

Examples

			0.1076539192264845766153234450909471905879...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 259-262.

Crossrefs

Programs

  • Mathematica
    c = k /. FindRoot[ EllipticK[k^2] == 2*EllipticE[k^2], {k, 9/10}, WorkingPrecision -> 120]; Take[ RealDigits[ N[Exp[-Pi*(EllipticK[1 - c^2] / EllipticK[c^2])], 120]][[1]], 105] (* Jean-François Alcover, Jul 28 2011, after MathWorld *)
    RealDigits[q /. FindRoot[4 EllipticE[InverseEllipticNomeQ[q]] == Pi EllipticTheta[3, 0, q]^2, {q, 1/9, 0, 1}, WorkingPrecision -> 105]][[1]] (* Jan Mangaldan, Jun 25 2020 *)
  • PARI
    c=solve(x=.9,.91, ellK(x)-2*ellE(x)); exp(-Pi*ellK(sqrt(1 - c^2))/ellK(c)) \\ Charles R Greathouse IV, Feb 04 2025