A072708 Last digit of F(n) is 6 where F(n) is the n-th Fibonacci number.
21, 39, 42, 48, 81, 99, 102, 108, 141, 159, 162, 168, 201, 219, 222, 228, 261, 279, 282, 288, 321, 339, 342, 348, 381, 399, 402, 408, 441, 459, 462, 468, 501, 519, 522, 528, 561, 579, 582, 588, 621, 639, 642, 648, 681, 699, 702, 708, 741, 759, 762, 768, 801
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,0,0,1,-1},{21,39,42,48,81},60] (* Harvey P. Dale, Aug 28 2017 *)
-
PARI
a(n) = (-3/4+(3*I)/4)*((1+I)*(-1)^n + (5+2*I)*(-I)^n + (2+5*I)*I^n - (10+10*I)*n) \\ Colin Barker, Oct 16 2015
-
PARI
Vec(x*(12*x^4+6*x^3+3*x^2+18*x+21)/(x^5-x^4-x+1) + O(x^100)) \\ Colin Barker, Oct 16 2015
Formula
G.f.: x*(12*x^4+6*x^3+3*x^2+18*x+21) / (x^5-x^4-x+1). - Colin Barker, Jun 16 2013
a(n) = (-3/4+(3*i)/4)*((1+i)*(-1)^n + (5+2*i)*(-i)^n + (2+5*i)*i^n - (10+10*i)*n) where i=sqrt(-1). - Colin Barker, Oct 16 2015
Comments