A072721 Number of partitions of n into parts which are each positive powers of a single number >1 (which may vary between partitions).
1, 0, 1, 1, 2, 1, 4, 1, 4, 2, 6, 1, 10, 1, 8, 4, 10, 1, 15, 1, 17, 5, 16, 1, 26, 2, 22, 5, 29, 1, 37, 1, 36, 7, 38, 4, 57, 1, 48, 9, 65, 1, 73, 1, 77, 13, 76, 1, 108, 2, 99, 11, 117, 1, 130, 5, 145, 14, 142, 1, 189, 1, 168, 19, 202, 5, 223, 1, 241, 17, 247, 1, 309, 1, 286, 24, 333, 4
Offset: 0
Keywords
Examples
a(5)=1 since the only partition without 1 as a part is 5 (a power of 5). a(6)=4 since 6 can be written as 6 (powers of 6), 3+3 (powers of 3) and 4+2 and 2+2+2 (both powers of 2). From _Gus Wiseman_, Jan 01 2019: (Start) The a(2) = 1 through a(12) = 10 integer partitions (A = 10, B = 11, C = 12): (2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (C) (22) (33) (44) (333) (55) (66) (42) (422) (82) (84) (222) (2222) (442) (93) (4222) (444) (22222) (822) (3333) (4422) (42222) (222222) (End) Compare above to the example section of A379957. - _Antti Karttunen_, Jan 23 2025
Links
Crossrefs
Programs
-
Mathematica
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]); Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],SameQ@@radbase/@#]&]],{n,30}] (* Gus Wiseman, Jan 01 2019 *)
-
PARI
a(n)={if(n==0, 1, sumdiv(n, d, if(d>1&&!ispower(d), polcoef(1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)), n))))} \\ Andrew Howroyd, Jan 23 2025
-
PARI
seq(n)={Vec(1 + sum(d=2, n, if(!ispower(d), -1 + 1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)))))} \\ Andrew Howroyd, Jan 23 2025
Formula
a(n) = A322900(n) - 1. - Gus Wiseman, Jan 01 2019
G.f.: 1 + Sum_{k>=2} -1 + 1/Product_{j>=1} (1 - x^(A175082(k)^j)). - Andrew Howroyd, Jan 23 2025
For n >= 1, a(n) >= A379957(n). - Antti Karttunen, Jan 23 2025
Comments