A072774 Powers of squarefree numbers.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
import Data.Map (empty, findMin, deleteMin, insert) import qualified Data.Map.Lazy as Map (null) a072774 n = a072774_list !! (n-1) (a072774_list, a072775_list, a072776_list) = unzip3 $ (1, 1, 1) : f (tail a005117_list) empty where f vs'@(v:vs) m | Map.null m || xx > v = (v, v, 1) : f vs (insert (v^2) (v, 2) m) | otherwise = (xx, bx, ex) : f vs' (insert (bx*xx) (bx, ex+1) $ deleteMin m) where (xx, (bx, ex)) = findMin m -- Reinhard Zumkeller, Apr 06 2014
-
Maple
isA := n -> n=1 or is(1 = nops({seq(p[2], p in ifactors(n)[2])})): select(isA, [seq(1..97)]); # Peter Luschny, Jun 10 2025
-
Mathematica
Select[Range[100], Length[Union[FactorInteger[#][[All, 2]]]] == 1 &] (* Geoffrey Critzer, Mar 30 2015 *)
-
PARI
is(n)=ispower(n,,&n); issquarefree(n) \\ Charles R Greathouse IV, Oct 16 2015
-
Python
from math import isqrt from sympy import mobius, integer_nthroot def A072774(n): def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))-1 def f(x): return n-2+x-sum(g(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 19 2024
Formula
Sum_{n>=1} 1/a(n)^s = 1 + Sum_{k>=1} (zeta(k*s)/zeta(2*k*s)-1) for s > 1. - Amiram Eldar, Mar 20 2025
a(n)/n ~ Pi^2/6 (A013661). - Friedjof Tellkamp, Jun 09 2025
Comments