A072775 Squarefree kernels of powers of squarefree numbers.
1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 13, 14, 15, 2, 17, 19, 21, 22, 23, 5, 26, 3, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 41, 42, 43, 46, 47, 7, 51, 53, 55, 57, 58, 59, 61, 62, 2, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 3, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 10, 101
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A052410.
Programs
-
Haskell
a072775 n = a072775_list !! (n-1) -- a072775_list defined in A072774. -- Reinhard Zumkeller, Apr 06 2014
-
Python
from math import isqrt, prod from sympy import mobius, integer_nthroot, primefactors def A072775(n): def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))-1 def f(x): return n-2+x-sum(g(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return prod(primefactors(kmax)) # Chai Wah Wu, Aug 19 2024
Comments