A072777 Powers of squarefree numbers that are not squarefree.
4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 169, 196, 216, 225, 243, 256, 289, 343, 361, 441, 484, 512, 529, 625, 676, 729, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1681, 1764, 1849
Offset: 1
Examples
The number 144 = 12^2 is not a member because 12 is not squarefree. 64 = 2^6 and 49 = 7^2 are members because, though not squarefree, they are powers of the squarefree numbers 2 and 7, respectively. Note that 64 is included even though it is also a square of a nonsquarefree number. - _Stanislav Sykora_, Jul 11 2014
Links
- Stanislav Sykora and Reinhard Zumkeller, Table of n, a(n) for n = 1..20000 (first 10000 terms from Reinhard Zumkeller)
Programs
-
Haskell
import Data.Map (singleton, findMin, deleteMin, insert) a072777 n = a072777_list !! (n-1) a072777_list = f 9 (drop 2 a005117_list) (singleton 4 (2, 2)) where f vv vs'@(v:ws@(w:_)) m | xx < vv = xx : f vv vs' (insert (bx*xx) (bx, ex+1) $ deleteMin m) | xx > vv = vv : f (w*w) ws (insert (v^3) (v, 3) m) where (xx, (bx, ex)) = findMin m -- Reinhard Zumkeller, Apr 06 2014
-
Mathematica
Select[Range[2000], Length[u = Union[FactorInteger[#][[All, 2]]]] == 1 && u[[1]] > 1 &] (* Jean-François Alcover, Mar 27 2013 *)
-
PARI
BelongsToA(n) = {my(f, k, e); if(n == 1, return(0)); f = factor(n); e = f[1, 2]; if(e == 1, return(0)); for(k = 2, #f[, 2], if(f[k, 2] != e, return(0))); return(1);} Ntest(nmax, test) = {my(k = 1, n = 0, v); v = vector(nmax); while(1, n++; if(test(n), v[k] = n; k++; if(k > nmax, break)); ); return(v); } a = Ntest(20000, BelongsToA) \\ Note: not very efficient. - Stanislav Sykora, Jul 11 2014
-
PARI
is(n)=ispower(n,,&n) && issquarefree(n) \\ Charles R Greathouse IV, Oct 16 2015
-
Python
from math import isqrt from sympy import mobius, integer_nthroot def A072777(n): def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))-1 def f(x): return n-1+x-sum(g(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length())) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 19 2024
Formula
Sum_{n>=1} 1/a(n) = Sum_{n>=2} mu(n)^2/(n*(n-1)) = Sum_{n>=2} (zeta(n)/zeta(2*n) - 1) = 0.8486338679... (A368250). - Amiram Eldar, Jul 22 2020
Comments