cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072777 Powers of squarefree numbers that are not squarefree.

Original entry on oeis.org

4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 169, 196, 216, 225, 243, 256, 289, 343, 361, 441, 484, 512, 529, 625, 676, 729, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1681, 1764, 1849
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 10 2002

Keywords

Comments

For all n exists k: a(n) = A072774(k) and A072776(k) > 1.
Numbers k such that every prime in the prime factorization of k is raised to the same power > 1; k is a term iff k/A007947(k)^m = 1 for some m > 1. - David James Sycamore, Jun 12 2024

Examples

			The number 144 = 12^2 is not a member because 12 is not squarefree.
64 = 2^6 and 49 = 7^2 are members because, though not squarefree, they are powers of the squarefree numbers 2 and 7, respectively. Note that 64 is included even though it is also a square of a nonsquarefree number. - _Stanislav Sykora_, Jul 11 2014
		

Crossrefs

Cf. A005117, subsequence of A001597 and A072774.
Cf. A007947.

Programs

  • Haskell
    import Data.Map (singleton, findMin, deleteMin, insert)
    a072777 n = a072777_list !! (n-1)
    a072777_list = f 9 (drop 2 a005117_list) (singleton 4 (2, 2)) where
       f vv vs'@(v:ws@(w:_)) m
        | xx < vv = xx : f vv vs' (insert (bx*xx) (bx, ex+1) $ deleteMin m)
        | xx > vv = vv : f (w*w) ws (insert (v^3) (v, 3) m)
        where (xx, (bx, ex)) = findMin m
    -- Reinhard Zumkeller, Apr 06 2014
    
  • Mathematica
    Select[Range[2000], Length[u = Union[FactorInteger[#][[All, 2]]]] == 1 && u[[1]] > 1 &] (* Jean-François Alcover, Mar 27 2013 *)
  • PARI
    BelongsToA(n) = {my(f, k, e); if(n == 1, return(0));
    f = factor(n); e = f[1, 2]; if(e == 1, return(0));
    for(k = 2, #f[, 2], if(f[k, 2] != e, return(0))); return(1);}
    Ntest(nmax, test) = {my(k = 1, n = 0, v); v = vector(nmax); while(1, n++; if(test(n), v[k] = n; k++; if(k > nmax, break)); ); return(v); }
    a = Ntest(20000, BelongsToA) \\ Note: not very efficient. - Stanislav Sykora, Jul 11 2014
    
  • PARI
    is(n)=ispower(n,,&n) && issquarefree(n) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A072777(n):
        def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))-1
        def f(x): return n-1+x-sum(g(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024

Formula

Sum_{n>=1} 1/a(n) = Sum_{n>=2} mu(n)^2/(n*(n-1)) = Sum_{n>=2} (zeta(n)/zeta(2*n) - 1) = 0.8486338679... (A368250). - Amiram Eldar, Jul 22 2020