cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A375142 Numbers whose powerful part (A057521) is a power of a squarefree number that is larger than 1 (A072777).

Original entry on oeis.org

4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, 54, 56, 60, 63, 64, 68, 75, 76, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 104, 112, 116, 117, 120, 121, 124, 125, 126, 128, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164
Offset: 1

Views

Author

Amiram Eldar, Aug 01 2024

Keywords

Comments

Subsequence of A013929 and first differs from it at n = 27: A013929(27) = 72 = 2^3 * 3^2 is not a term of this sequence.
Numbers whose prime factorization has one distinct exponent that does not equal 1.
Numbers that are a product of a squarefree number (A005117) and a power of a different squarefree number that is not squarefree.
The asymptotic density of this sequence is Sum_{k>=2} (d(k)-1)/zeta(2) = 0.36113984820338109927..., where d(k) = zeta(k) * Product_{p prime} (1 + Sum_{i=k+1..2*k-1} (-1)^i/p^i), if k is even, and d(k) = (zeta(2*k)/zeta(k)) * Product_{p prime} (1 + 2/p^k + Sum_{i=k+1..2*k-1} (-1)^(i+1)/p^i) if k is odd > 1.

Examples

			12 = 2^2 * 3 is a term because its powerful part, 4 = 2^2, is a power of a squarefree number, 2, that is larger than 1.
		

Crossrefs

Subsequence of A013929.
Subsequences: A067259, A072777, A190641, A336591.

Programs

  • Mathematica
    q[n_] := Count[Union[FactorInteger[n][[;; , 2]]], _?(# > 1 &)] == 1; Select[Range[200], q]
  • PARI
    is(k) = {my(e = select(x -> (x > 1), Set(factor(k)[,2]))); #e == 1;}

A368251 The number of nonsquarefree divisors of n that are powers of squarefree numbers (A072777).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 5, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Dec 19 2023

Keywords

Comments

First differs from A046660 and A066301 at n = 36, and from A183094 at n = 72.
Let b(n, k) be the sequence that counts the divisors of n that are k-th powers of squarefree numbers. Then, b(n, 1) = A034444(n), b(n, 2) = A323308(n), b(n, 3) = A368248(n). b(n, k) is multiplicative with b(p^e, k) = 2 if e >= k, and 1 otherwise. The asymptotic mean of b(n, k) for k >= 2 is lim_{m->oo} (1/m) * Sum_{n=1..m} b(n, k) = zeta(k)/zeta(2*k). Since a(n) = Sum_{k>=2} (b(n, k) - 1), the formula for the asymptotic mean of this sequence follows (see the Formula section).

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, 1 + Total[2^Accumulate[Count[e, #] & /@ Range[Max[e], 1, -1]] - 1] - 2^Length[e]]; a[1] = 0; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), e, m, h, c); if(n == 1, 0, e = f[,2]; m = vecmax(e); h = vector(m); for(i = 1,m, c = 0; for(j = 1, #e, if(e[j] == (m+1-i), c++)); h[i] = c); for(i = 2, m, h[i] += h[i-1]); for(i = 1, m, h[i] = 2^h[i]-1); 1 + vecsum(h) - 1<<#e);}

Formula

a(n) = A327527(n) - A034444(n).
a(n) = 0 if and only if n is squarefree (A005117).
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=2} (zeta(k)/zeta(2*k) - 1) = 0.848633... (A368250).

A001597 Perfect powers: m^k where m > 0 and k >= 2.

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764
Offset: 1

Views

Author

Keywords

Comments

Might also be called the nontrivial powers. - N. J. A. Sloane, Mar 24 2018
See A175064 for number of ways to write a(n) as m^k (m >= 1, k >= 1). - Jaroslav Krizek, Jan 23 2010
a(1) = 1, for n >= 2: a(n) = numbers m such that sum of perfect divisors of x = m has no solution. Perfect divisor of n is divisor d such that d^k = n for some k >= 1. a(n) for n >= 2 is complement of A175082. - Jaroslav Krizek, Jan 24 2010
A075802(a(n)) = 1. - Reinhard Zumkeller, Jun 20 2011
Catalan's conjecture (now a theorem) is that 1 occurs just once as a difference, between 8 and 9.
For a proof of Catalan's conjecture, see the paper by Metsänkylä. - L. Edson Jeffery, Nov 29 2013
m^k is the largest number n such that (n^k-m)/(n-m) is an integer (for k > 1 and m > 1). - Derek Orr, May 22 2014
From Daniel Forgues, Jul 22 2014: (Start)
a(n) is asymptotic to n^2, since the density of cubes and higher powers among the squares and higher powers is 0. E.g.,
a(10^1) = 49 (49% of 10^2),
a(10^2) = 6400 (64% of 10^4),
a(10^3) = 804357 (80.4% of 10^6),
a(10^4) = 90706576 (90.7% of 10^8),
a(10^n) ~ 10^(2n) - o(10^(2n)). (End)
A proper subset of A001694. - Robert G. Wilson v, Aug 11 2014
a(10^n): 1, 49, 6400, 804357, 90706576, 9565035601, 979846576384, 99066667994176, 9956760243243489, ... . - Robert G. Wilson v, Aug 15 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 66.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section D9.
  • René Schoof, Catalan's Conjecture, Springer-Verlag, 2008, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A007916.
Subsequence of A072103; A072777 is a subsequence.
Union of A075109 and A075090.
There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2), and which are sometimes confused with the present sequence.
First differences give A053289.

Programs

  • Haskell
    import Data.Map (singleton, findMin, deleteMin, insert)
    a001597 n = a001597_list !! (n-1)
    (a001597_list, a025478_list, a025479_list) =
       unzip3 $ (1, 1, 2) : f 9 (3, 2) (singleton 4 (2, 2)) where
       f zz (bz, ez) m
        | xx < zz = (xx, bx, ex) :
                    f zz (bz, ez+1) (insert (bx*xx) (bx, ex+1) $ deleteMin m)
        | xx > zz = (zz, bz, 2) :
                    f (zz+2*bz+1) (bz+1, 2) (insert (bz*zz) (bz, 3) m)
        | otherwise = f (zz+2*bz+1) (bz+1, 2) m
        where (xx, (bx, ex)) = findMin m  --  bx ^ ex == xx
    -- Reinhard Zumkeller, Mar 28 2014, Oct 04 2012, Apr 13 2012
    
  • Magma
    [1] cat [n : n in [2..1000] | IsPower(n) ];
    
  • Maple
    isA001597 := proc(n)
        local e ;
        e := seq(op(2,p),p=ifactors(n)[2]) ;
        return ( igcd(e) >=2 or n =1 ) ;
    end proc:
    A001597 := proc(n)
        option remember;
        local a;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA001597(a) then
                    return a ;
                end if;
             end do;
        end if;
    end proc:
    seq(A001597(n),n=1..70) ; # R. J. Mathar, Jun 07 2011
    N:= 10000: # to get all entries <= N
    sort({1,seq(seq(a^b, b = 2 .. floor(log[a](N))), a = 2 .. floor(sqrt(N)))}); # Robert FERREOL, Jul 18 2023
  • Mathematica
    min = 0; max = 10^4;  Union@ Flatten@ Table[ n^expo, {expo, Prime@ Range@ PrimePi@ Log2@ max}, {n, Floor[1 + min^(1/expo)], max^(1/expo)}] (* T. D. Noe, Apr 18 2011; slightly modified by Robert G. Wilson v, Aug 11 2014 *)
    perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; Select[Range@ 1765, perfectPowerQ] (* Ant King, Jun 29 2013; slightly modified by Robert G. Wilson v, Aug 11 2014 *)
    nextPerfectPower[n_] := If[n == 1, 4, Min@ Table[ (Floor[n^(1/k)] + 1)^k, {k, 2, 1 + Floor@ Log2@ n}]]; NestList[ nextPerfectPower, 1, 55] (* Robert G. Wilson v, Aug 11 2014 *)
    Join[{1},Select[Range[2000],GCD@@FactorInteger[#][[All,2]]>1&]] (* Harvey P. Dale, Apr 30 2018 *)
  • PARI
    {a(n) = local(m, c); if( n<2, n==1, c=1; m=1; while( cMichael Somos, Aug 05 2009 */
    
  • PARI
    is(n)=ispower(n) || n==1 \\ Charles R Greathouse IV, Sep 16 2015
    
  • PARI
    list(lim)=my(v=List(vector(sqrtint(lim\=1),n,n^2))); for(e=3,logint(lim,2), for(n=2,sqrtnint(lim,e), listput(v,n^e))); Set(v) \\ Charles R Greathouse IV, Dec 10 2019
    
  • Python
    from sympy import perfect_power
    def ok(n): return n==1 or perfect_power(n)
    print([m for m in range(1, 1765) if ok(m)]) # Michael S. Branicky, Jan 04 2021
    
  • Python
    import sympy
    class A001597() :
        def _init_(self) :
            self.a = [1]
        def at(self, n):
            if n <= len(self.a):
                return self.a[n-1]
            else:
                cand = self.at(n-1)+1
                while sympy.perfect_power(cand) == False:
                    cand += 1
                self.a.append(cand)
                return cand
    a001597 = A001597()
    for n in range(1,20):
        print(a001597.at(n)) # R. J. Mathar, Mar 28 2023
    
  • Python
    from sympy import mobius, integer_nthroot
    def A001597(n):
        def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 13 2024
  • Sage
    def A001597_list(n) :
        return [k for k in (1..n) if k.is_perfect_power()]
    A001597_list(1764) # Peter Luschny, Feb 03 2012
    

Formula

Goldbach showed that Sum_{n >= 2} 1/(a(n)-1) = 1.
Formulas from postings to the Number Theory List by various authors, 2002:
Sum_{i >= 2} Sum_{j >= 2} 1/i^j = 1;
Sum_{k >= 2} 1/(a(k)+1) = Pi^2 / 3 - 5/2;
Sum_{k >= 2} 1/a(k) = Sum_{n >= 2} mu(n)(1- zeta(n)) approx = 0.87446436840494... See A072102.
For asymptotics see Newman.
For n > 1: gcd(exponents in prime factorization of a(n)) > 1, cf. A124010. - Reinhard Zumkeller, Apr 13 2012
a(n) ~ n^2. - Thomas Ordowski, Nov 04 2012
a(n) = n^2 - 2*n^(5/3) - 2*n^(7/5) + (13/3)*n^(4/3) - 2*n^(9/7) + 2*n^(6/5) - 2*n^(13/11) + o(n^(13/11)) (Jakimczuk, 2012). - Amiram Eldar, Jun 30 2023

Extensions

Minor corrections from N. J. A. Sloane, Jun 27 2010

A072774 Powers of squarefree numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 10 2002

Keywords

Comments

Essentially the same as A062770. - R. J. Mathar, Sep 25 2008
Numbers m such that in canonical prime factorization all prime exponents are identical: A124010(m,k) = A124010(m,1) for k = 2..A000005(m). - Reinhard Zumkeller, Apr 06 2014
Heinz numbers of uniform partitions. An integer partition is uniform if all parts appear with the same multiplicity. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 16 2018

Crossrefs

Complement of A059404.
Cf. A072775, A072776, A072777 (subsequence), A005117, A072778, A124010, A329332 (tabular arrangement), A384667 (characteristic function).
A subsequence of A242414.

Programs

  • Haskell
    import Data.Map (empty, findMin, deleteMin, insert)
    import qualified Data.Map.Lazy as Map (null)
    a072774 n = a072774_list !! (n-1)
    (a072774_list, a072775_list, a072776_list) = unzip3 $
       (1, 1, 1) : f (tail a005117_list) empty where
       f vs'@(v:vs) m
        | Map.null m || xx > v = (v, v, 1) :
                                 f vs (insert (v^2) (v, 2) m)
        | otherwise = (xx, bx, ex) :
                      f vs' (insert (bx*xx) (bx, ex+1) $ deleteMin m)
        where (xx, (bx, ex)) = findMin m
    -- Reinhard Zumkeller, Apr 06 2014
    
  • Maple
    isA := n -> n=1 or is(1 = nops({seq(p[2], p in ifactors(n)[2])})):
    select(isA, [seq(1..97)]);  # Peter Luschny, Jun 10 2025
  • Mathematica
    Select[Range[100], Length[Union[FactorInteger[#][[All, 2]]]] == 1 &] (* Geoffrey Critzer, Mar 30 2015 *)
  • PARI
    is(n)=ispower(n,,&n); issquarefree(n) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A072774(n):
        def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))-1
        def f(x): return n-2+x-sum(g(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024

Formula

a(n) = A072775(n)^A072776(n).
Sum_{n>=1} 1/a(n)^s = 1 + Sum_{k>=1} (zeta(k*s)/zeta(2*k*s)-1) for s > 1. - Amiram Eldar, Mar 20 2025
a(n)/n ~ Pi^2/6 (A013661). - Friedjof Tellkamp, Jun 09 2025

A100778 Integer powers of primorial numbers.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 30, 32, 36, 64, 128, 210, 216, 256, 512, 900, 1024, 1296, 2048, 2310, 4096, 7776, 8192, 16384, 27000, 30030, 32768, 44100, 46656, 65536, 131072, 262144, 279936, 510510, 524288, 810000, 1048576, 1679616, 2097152, 4194304, 5336100
Offset: 1

Views

Author

Amarnath Murthy, Nov 28 2004

Keywords

Comments

Smallest squarefree numbers or their powers with distinct prime signatures. Or least numbers with prime signatures (p*q*r*...)^k, where p,q,r,... are primes and k is a whole number.
Also Heinz numbers of uniform integer partitions whose union is an initial interval of positive integers. An integer partition is uniform if all parts appear with the same multiplicity. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). The sequence of all uniform integer partitions whose Heinz numbers belong to the sequence begins: (1), (11), (12), (111), (1111), (123), (11111), (1122), (111111), (1111111), (1234), (111222), (11111111), (111111111), (112233), (1111111111). - Gus Wiseman, Dec 26 2018
From Amiram Eldar, Sep 26 2023: (Start)
Intersection of A025487 and A072774.
The distinct terms of A046523(A072774(n)) in ascending orders.
The k-th power of the n-th primorial number, A002110(n)^k, has (k+1)^n divisors which are the set of the (k+1)-free prime(n)-smooth numbers. (End)

Examples

			10 is not a term as 6 is a member with the same prime signature 10 > 6.
216 is a term as 216 = (2*3)^3. 243 is not a term as 32 represents that prime signature.
		

Crossrefs

Programs

  • Mathematica
    unintQ[n_]:=And[SameQ@@Last/@FactorInteger[n],Length[FactorInteger[n]]==PrimePi[FactorInteger[n][[-1,1]]]];
    Select[Range[1000],unintQ] (* Gus Wiseman, Dec 26 2018 *)

Formula

Sum_{n>=1} 1/a(n) = 1 + Sum_{n>=1} 1/A057588(n) = 2.2397359032... - Amiram Eldar, Oct 20 2020; corrected by Hal M. Switkay and Amiram Eldar, Apr 12 2021

Extensions

More terms and simpler definition from Ray Chandler, Nov 29 2004

A303606 Powers of composite squarefree numbers that are not squarefree.

Original entry on oeis.org

36, 100, 196, 216, 225, 441, 484, 676, 900, 1000, 1089, 1156, 1225, 1296, 1444, 1521, 1764, 2116, 2601, 2744, 3025, 3249, 3364, 3375, 3844, 4225, 4356, 4761, 4900, 5476, 5929, 6084, 6724, 7225, 7396, 7569, 7776, 8281, 8649, 8836, 9025, 9261, 10000, 10404, 10648, 11025, 11236
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 26 2018

Keywords

Examples

			196 is in the sequence because 196 = 2^2*7^2.
4900 is in the sequence because 4900 = 2^2*5^2*7^2.
		

Crossrefs

Intersection of A024619 and A072777.
Intersection of A072774 and A126706.
Intersection of A013929 and A182853.

Programs

  • Mathematica
    Select[Range[12000], Length[Union[FactorInteger[#][[All, 2]]]] == 1 && ! SquareFreeQ[#] && ! PrimePowerQ[#] &]
    seq[max_] := Module[{sp = Select[Range[Floor@Sqrt[max]], SquareFreeQ[#] && PrimeNu[#] > 1 &], s = {}}, Do[s = Join[s, sp[[k]]^Range[2, Floor@Log[sp[[k]], max]]], {k, 1, Length[sp]}]; Union@s]; seq[10^4] (* Amiram Eldar, Feb 12 2021 *)
  • Python
    from math import isqrt
    from sympy import mobius, primepi, integer_nthroot
    def A303606(n):
        def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))-primepi(x))
        def f(x): return n-3+x+(y:=x.bit_length())-sum(g(integer_nthroot(x,k)[0]) for k in range(2,y))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024

Formula

Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/((A120944(n)-1)*A120944(n)) = Sum_{k>=2} (zeta(k)/zeta(2*k) - P(k) - 1) = 0.07547719891508850482..., where P(k) is the prime zeta function. - Amiram Eldar, Feb 12 2021

A340674 Numbers of the form s^(2^e), where s is a squarefree number, and e >= 1.

Original entry on oeis.org

4, 9, 16, 25, 36, 49, 81, 100, 121, 169, 196, 225, 256, 289, 361, 441, 484, 529, 625, 676, 841, 900, 961, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1681, 1764, 1849, 2116, 2209, 2401, 2601, 2809, 3025, 3249, 3364, 3481, 3721, 3844, 4225, 4356, 4489, 4761, 4900
Offset: 1

Views

Author

Antti Karttunen, Jan 31 2021

Keywords

Crossrefs

Positions of terms larger than 2 in A340673 (also in A340675), and of terms larger than 1 in A340676.
Subsequence of A072777 and of A340682.

Programs

  • Mathematica
    Select[Range[10^4], Length[(u = Union[FactorInteger[#][[;; , 2]]])] == 1 && u[[1]] > 1 && u[[1]] == 2^IntegerExponent[u[[1]], 2] &] (* Amiram Eldar, Feb 08 2021 *)
  • PARI
    A209229(n) = (n && !bitand(n,n-1));
    isA340674(n) = { my(b,e); (((e=ispower(n,,&b))>0)&&issquarefree(b)&&A209229(e)); };
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A340674(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        def f(x): return n+x-sum(g(integer_nthroot(x,1<Chai Wah Wu, Jun 01 2025

Formula

Sum_{n>=1} 1/a(n) = Sum_{k>=1} (zeta(2^k)/zeta(2^(k+1))-1) = 0.6018231854... - Amiram Eldar, Feb 08 2021

A368250 Decimal expansion of Sum_{k>=2} (zeta(k)/zeta(2*k) - 1).

Original entry on oeis.org

8, 4, 8, 6, 3, 3, 8, 6, 7, 9, 6, 4, 8, 8, 3, 6, 3, 2, 6, 8, 4, 9, 0, 0, 1, 2, 0, 9, 0, 4, 3, 0, 4, 6, 2, 9, 6, 0, 0, 1, 6, 6, 4, 4, 6, 8, 8, 1, 7, 5, 5, 1, 7, 1, 6, 7, 9, 6, 2, 0, 3, 0, 9, 0, 0, 3, 6, 5, 4, 2, 2, 1, 3, 7, 1, 3, 0, 2, 1, 2, 9, 1, 8, 8, 6, 6, 3, 4, 8, 1, 0, 1, 1, 5, 3, 7, 0, 2, 0, 6, 3, 4, 4, 3, 7
Offset: 0

Views

Author

Amiram Eldar, Dec 19 2023

Keywords

Examples

			0.84863386796488363268490012090430462960016644688175...
		

Crossrefs

Programs

  • Maple
    evalf(sum(Zeta(k)/Zeta(2*k) - 1, k = 2 .. infinity), 120);
  • PARI
    sumpos(k=2, zeta(k)/zeta(2*k) - 1)

Formula

Equals Sum_{k>=2} mu(k)^2/(k*(k-1)) = Sum_{k>=2} 1/A368249(k).
Equals Sum_{k>=1} 1/A072777(k).
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A368251(k).

A322793 Proper powers of primorial numbers.

Original entry on oeis.org

4, 8, 16, 32, 36, 64, 128, 216, 256, 512, 900, 1024, 1296, 2048, 4096, 7776, 8192, 16384, 27000, 32768, 44100, 46656, 65536, 131072, 262144, 279936, 524288, 810000, 1048576, 1679616, 2097152, 4194304, 5336100, 8388608, 9261000
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A primorial number is a product of the first n primes, for some n.
Also Heinz numbers of non-strict uniform integer partitions whose union is an initial interval of positive integers. An integer partition is uniform if all parts appear with the same multiplicity. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of all non-strict uniform integer partitions whose Heinz numbers belong to the sequence begins: (11), (111), (1111), (11111), (2211), (111111), (1111111), (222111), (11111111), (111111111), (332211), (1111111111), (22221111).
		

Crossrefs

Programs

  • Mathematica
    unintpropQ[n_]:=And[SameQ@@Last/@FactorInteger[n],FactorInteger[n][[1,2]]>1,Length[FactorInteger[n]]==PrimePi[FactorInteger[n][[-1,1]]]];
    Select[Range[10000],unintpropQ]
    (* Second program: *)
    nn = 2^24; k = 1; P = 2; Union@ Reap[While[j = 2; While[P^j < nn, Sow[P^j]; j++]; j > 2, k++; P *= Prime[k]]][[-1, 1]] (* Michael De Vlieger, Oct 04 2023 *)

Formula

Sum_{n>=1} 1/a(n) = Sum_{k>=1} 1/(A002110(k)*(A002110(k)-1)) = 0.53450573145072369022... . - Amiram Eldar, Mar 10 2024

A303661 Powers of squarefree semiprimes that are not squarefree.

Original entry on oeis.org

36, 100, 196, 216, 225, 441, 484, 676, 1000, 1089, 1156, 1225, 1296, 1444, 1521, 2116, 2601, 2744, 3025, 3249, 3364, 3375, 3844, 4225, 4761, 5476, 5929, 6724, 7225, 7396, 7569, 7776, 8281, 8649, 8836, 9025, 9261, 10000, 10648, 11236, 12321, 13225, 13924, 14161, 14884
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 28 2018

Keywords

Examples

			1089 is in the sequence because 1089 = 3^2*11^2.
1296 is in the sequence because 1296 = 2^4*3^4.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[15000], Length[Union[FactorInteger[#][[All, 2]]]] == 1 && PrimeNu[#] == 2 && ! SquareFreeQ[#] &]
    seq[max_] := Module[{sp = Select[Range[Floor@Sqrt[max]], SquareFreeQ[#] && PrimeNu[#] == 2 &], s = {}}, Do[s = Join[s, sp[[k]]^Range[2, Floor@Log[sp[[k]], max]]], {k, 1, Length[sp]}]; Union@s]; seq[10000] (* Amiram Eldar, Feb 12 2021 *)
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A303661(n):
        def g(x): return int(-(t:=primepi(s:=isqrt(x)))-(t*(t-1)>>1)+sum(primepi(x//k) for k in primerange(1, s+1)))
        def f(x): return n-1+x-sum(g(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024

Formula

Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/((A006881(n)-1)*A006881(n)) = Sum_{k>=2} (P(k)^2 - P(2*k))/2 = 0.07160601536406295068..., where P(k) is the prime zeta function. - Amiram Eldar, Feb 12 2021
Showing 1-10 of 15 results. Next