cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A115964 Denominator of Sum_{i=1..n} 1/prime(i)^3.

Original entry on oeis.org

8, 216, 27000, 9261000, 12326391000, 27081081027000, 133049351085651000, 912585499096480209000, 11103427767506874702903000, 270801499821725167129101267000, 8067447481189014453943055845197000
Offset: 1

Views

Author

Jonathan Vos Post, Mar 14 2006

Keywords

Comments

Numerators are in A115963.
Also the primorials cubed. - Reikku Kulon, Sep 18 2008

Examples

			1/8, 35/216, 4591/27000, 1601713/9261000, 2141141003/12326391000, 4716413174591/27081081027000.
		

Crossrefs

Cf. A115963 (numerators).
Cf. A024451 (numerator of sum_{i=1..n} 1/prime(i)), A002110 (primorial, also denominator of sum_{i=1..n} 1/prime(i)), A061015 (numerator of sum_{i=1..n} 1/prime(i)^2).
Cf. A061742, A100778. - Reikku Kulon, Sep 18 2008

Programs

Formula

a(n) = denominator of Sum_{i=1..n} 1/A000040(i)^3.
a(n) = A002110(n)^3. - Reikku Kulon, Sep 18 2008

A322792 Irregular triangle read by rows where T(n,k) = A002110(n/d)^d, where d = A027750(n,k) and A002110(m) is the product of the first m primes.

Original entry on oeis.org

2, 6, 4, 30, 8, 210, 36, 16, 2310, 32, 30030, 900, 216, 64, 510510, 128, 9699690, 44100, 1296, 256, 223092870, 27000, 512, 6469693230, 5336100, 7776, 1024, 200560490130, 2048, 7420738134810, 901800900, 9261000, 810000, 46656, 4096, 304250263527210, 8192
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A reordering of A100778 (powers of primorials), these are the Heinz numbers of uniform integer partitions of length n whose union is an initial interval of positive integers. An integer partition is uniform if all parts appear with the same multiplicity. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Triangle begins:
           2
           6          4
          30          8
         210         36         16
        2310         32
       30030        900        216         64
      510510        128
     9699690      44100       1296        256
   223092870      27000        512
  6469693230    5336100       7776       1024
Corresponding triangle of integer partitions whose Heinz numbers belong to the triangle begins:
  (1)
  (21)        (11)
  (321)       (111)
  (4321)      (2211)      (1111)
  (54321)     (11111)
  (654321)    (332211)    (222111)    (111111)
  (7654321)   (1111111)
  (87654321)  (44332211)  (22221111)  (11111111)
  (987654321) (333222111) (111111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Product[Prime[i]^d,{i,n/d}],{n,12},{d,Divisors[n]}]

Extensions

Name edited by Peter Munn, Mar 05 2025

A322784 Number of multiset partitions of uniform multisets of size n whose union is an initial interval of positive integers.

Original entry on oeis.org

1, 1, 4, 8, 29, 59, 311, 892, 4983, 21863, 126813, 678626, 4446565, 27644538, 195561593, 1384705697, 10613378402, 82864870101, 686673571479, 5832742205547, 51897707277698, 474889512098459, 4514467567213008, 44152005855085601, 446355422070799305, 4638590359349994120
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A multiset is uniform if all multiplicities are equal.
Also the number of factorizations into factors > 1 of primorial powers k in A100778 with sum of prime indices A056239(k) equal to n.
a(n) is the number of nonequivalent nonnegative integer matrices without zero rows or columns with equal column sums and total sum n up to permutation of rows. - Andrew Howroyd, Jan 11 2020

Examples

			The a(1) = 1 through a(4) = 29 multiset partitions:
  {{1}}   {{1,1}}     {{1,1,1}}       {{1,1,1,1}}
          {{1,2}}     {{1,2,3}}       {{1,1,2,2}}
         {{1},{1}}   {{1},{1,1}}      {{1,2,3,4}}
         {{1},{2}}   {{1},{2,3}}     {{1},{1,1,1}}
                     {{2},{1,3}}     {{1,1},{1,1}}
                     {{3},{1,2}}     {{1},{1,2,2}}
                    {{1},{1},{1}}    {{1,1},{2,2}}
                    {{1},{2},{3}}    {{1,2},{1,2}}
                                     {{1},{2,3,4}}
                                     {{1,2},{3,4}}
                                     {{1,3},{2,4}}
                                     {{1,4},{2,3}}
                                     {{2},{1,1,2}}
                                     {{2},{1,3,4}}
                                     {{3},{1,2,4}}
                                     {{4},{1,2,3}}
                                    {{1},{1},{1,1}}
                                    {{1},{1},{2,2}}
                                    {{1},{2},{1,2}}
                                    {{1},{2},{3,4}}
                                    {{1},{3},{2,4}}
                                    {{1},{4},{2,3}}
                                    {{2},{2},{1,1}}
                                    {{2},{3},{1,4}}
                                    {{2},{4},{1,3}}
                                    {{3},{4},{1,2}}
                                   {{1},{1},{1},{1}}
                                   {{1},{1},{2},{2}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • Mathematica
    u[n_,k_]:=u[n,k]=If[n==1,1,Sum[u[n/d,d],{d,Select[Rest[Divisors[n]],#<=k&]}]];
    Table[Sum[u[Array[Prime,d,1,Times]^(n/d),Array[Prime,d,1,Times]^(n/d)],{d,Divisors[n]}],{n,12}]

Formula

a(n) = Sum_{d|n} A001055(A002110(n/d)^d).
a(n) = Sum_{d|n} A219727(n/d, d). - Andrew Howroyd, Jan 11 2020

Extensions

a(14)-a(15) from Alois P. Heinz, Jan 16 2019
Terms a(16) and beyond from Andrew Howroyd, Jan 11 2020

A322785 Number of uniform multiset partitions of uniform multisets of size n whose union is an initial interval of positive integers.

Original entry on oeis.org

1, 1, 4, 4, 12, 4, 48, 4, 183, 297, 1186, 4, 33950, 4, 139527, 1529608, 4726356, 4, 229255536, 4, 3705777010, 36279746314, 13764663019, 4, 14096735197959, 5194673049514, 7907992957755, 2977586461058927, 13426396910491001, 4, 1350012288268171854, 4, 59487352224070807287
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A multiset is uniform if all multiplicities are equal. A multiset partition is uniform if all parts have the same size.

Examples

			The a(1) = 1 though a(6) = 48 multiset partitions:
  {1}  {11}    {111}      {1111}        {11111}          {111111}
       {12}    {123}      {1122}        {12345}          {111222}
       {1}{1}  {1}{1}{1}  {1234}        {1}{1}{1}{1}{1}  {112233}
       {1}{2}  {1}{2}{3}  {11}{11}      {1}{2}{3}{4}{5}  {123456}
                          {11}{22}                       {111}{111}
                          {12}{12}                       {111}{222}
                          {12}{34}                       {112}{122}
                          {13}{24}                       {112}{233}
                          {14}{23}                       {113}{223}
                          {1}{1}{1}{1}                   {122}{133}
                          {1}{1}{2}{2}                   {123}{123}
                          {1}{2}{3}{4}                   {123}{456}
                                                         {124}{356}
                                                         {125}{346}
                                                         {126}{345}
                                                         {134}{256}
                                                         {135}{246}
                                                         {136}{245}
                                                         {145}{236}
                                                         {146}{235}
                                                         {156}{234}
                                                         {11}{11}{11}
                                                         {11}{12}{22}
                                                         {11}{22}{33}
                                                         {11}{23}{23}
                                                         {12}{12}{12}
                                                         {12}{12}{33}
                                                         {12}{13}{23}
                                                         {12}{34}{56}
                                                         {12}{35}{46}
                                                         {12}{36}{45}
                                                         {13}{13}{22}
                                                         {13}{24}{56}
                                                         {13}{25}{46}
                                                         {13}{26}{45}
                                                         {14}{23}{56}
                                                         {14}{25}{36}
                                                         {14}{26}{35}
                                                         {15}{23}{46}
                                                         {15}{24}{36}
                                                         {15}{26}{34}
                                                         {16}{23}{45}
                                                         {16}{24}{35}
                                                         {16}{25}{34}
                                                         {1}{1}{1}{1}{1}{1}
                                                         {1}{1}{1}{2}{2}{2}
                                                         {1}{1}{2}{2}{3}{3}
                                                         {1}{2}{3}{4}{5}{6}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Sum[Length[Select[mps[m],SameQ@@Length/@#&]],{m,Table[Join@@Table[Range[n/d],{d}],{d,Divisors[n]}]}],{n,8}]

Formula

a(n) = 4 <=> n in { A000040 }. - Alois P. Heinz, Feb 03 2022

Extensions

More terms from Alois P. Heinz, Jan 30 2019
Terms a(14) and beyond from Andrew Howroyd, Feb 03 2022

A365308 Powers of primorials P(k)^m, k > 1, m > 1, where P(k) = A002110(k).

Original entry on oeis.org

36, 216, 900, 1296, 7776, 27000, 44100, 46656, 279936, 810000, 1679616, 5336100, 9261000, 10077696, 24300000, 60466176, 362797056, 729000000, 901800900, 1944810000, 2176782336, 12326391000, 13060694016, 21870000000, 78364164096, 260620460100, 408410100000, 470184984576
Offset: 1

Views

Author

Michael De Vlieger, Oct 02 2023

Keywords

Comments

Proper subset of A303606, in turn a proper subset of A286708, in turn a proper subset of A126706.
Numbers in A322793 that are not powers of 2.

Examples

			Terms less than 10^4 include P(2)^2 = 36, P(2)^3 = 216, P(2)^4 = 1296, P(2)^5 = 7776, and P(3)^2 = 900.
		

Crossrefs

Programs

  • Mathematica
    nn = 2^39; k = 2; P = 6; Union@ Reap[While[j = 2; While[P^j < nn, Sow[P^j]; j++]; j > 2, k++; P *= Prime[k]] ][[-1, 1]]

Formula

Intersection of A100778 and A303606.
This sequence is {A325374 \ {A002110 \ {1,2}}} = {A322793 \ {A000079 \ {1,2}}}.
Sum_{n>=1} 1/a(n) = Sum_{k>=2} 1/(P(k)*(P(k)-1)) = 0.03450573145072369022... . - Amiram Eldar, Mar 10 2024

A322788 Irregular triangle read by rows where T(n,k) is the number of uniform multiset partitions of a multiset with d = A027750(n,k) copies of each integer from 1 to n/d.

Original entry on oeis.org

1, 2, 2, 2, 2, 5, 4, 3, 2, 2, 27, 11, 6, 4, 2, 2, 142, 29, 8, 4, 282, 12, 3, 1073, 101, 8, 4, 2, 2, 32034, 1581, 234, 75, 20, 6, 2, 2, 136853, 2660, 10, 4, 1527528, 1985, 91, 4, 4661087, 64596, 648, 20, 5, 2, 2, 227932993, 1280333, 41945, 231, 28, 6
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A multiset partition is uniform if all parts have the same size.

Examples

			Triangle begins:
     1
     2    2
     2    2
     5    4    3
     2    2
    27   11    6    4
     2    2
   142   29    8    4
   282   12    3
  1073  101    8    4
The multiset partitions counted under row 6:
  {123456}          {112233}          {111222}          {111111}
  {123}{456}        {112}{233}        {111}{222}        {111}{111}
  {124}{356}        {113}{223}        {112}{122}        {11}{11}{11}
  {125}{346}        {122}{133}        {11}{12}{22}      {1}{1}{1}{1}{1}{1}
  {126}{345}        {123}{123}        {12}{12}{12}
  {134}{256}        {11}{22}{33}      {1}{1}{1}{2}{2}{2}
  {135}{246}        {11}{23}{23}
  {136}{245}        {12}{12}{33}
  {145}{236}        {12}{13}{23}
  {146}{235}        {13}{13}{22}
  {156}{234}        {1}{1}{2}{2}{3}{3}
  {12}{34}{56}
  {12}{35}{46}
  {12}{36}{45}
  {13}{24}{56}
  {13}{25}{46}
  {13}{26}{45}
  {14}{23}{56}
  {14}{25}{36}
  {14}{26}{35}
  {15}{23}{46}
  {15}{24}{36}
  {15}{26}{34}
  {16}{23}{45}
  {16}{24}{35}
  {16}{25}{34}
  {1}{2}{3}{4}{5}{6}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[mps[Join@@Table[Range[n/d],{d}]],SameQ@@Length/@#&]],{n,10},{d,Divisors[n]}]

Formula

T(n,k) = A322794(A002110(n/d)^d), where d = A027750(n,k).

Extensions

More terms from Alois P. Heinz, Jan 30 2019
Terms a(38) and beyond from Andrew Howroyd, Feb 03 2022
Edited by Peter Munn, Mar 05 2025

A322793 Proper powers of primorial numbers.

Original entry on oeis.org

4, 8, 16, 32, 36, 64, 128, 216, 256, 512, 900, 1024, 1296, 2048, 4096, 7776, 8192, 16384, 27000, 32768, 44100, 46656, 65536, 131072, 262144, 279936, 524288, 810000, 1048576, 1679616, 2097152, 4194304, 5336100, 8388608, 9261000
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A primorial number is a product of the first n primes, for some n.
Also Heinz numbers of non-strict uniform integer partitions whose union is an initial interval of positive integers. An integer partition is uniform if all parts appear with the same multiplicity. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of all non-strict uniform integer partitions whose Heinz numbers belong to the sequence begins: (11), (111), (1111), (11111), (2211), (111111), (1111111), (222111), (11111111), (111111111), (332211), (1111111111), (22221111).
		

Crossrefs

Programs

  • Mathematica
    unintpropQ[n_]:=And[SameQ@@Last/@FactorInteger[n],FactorInteger[n][[1,2]]>1,Length[FactorInteger[n]]==PrimePi[FactorInteger[n][[-1,1]]]];
    Select[Range[10000],unintpropQ]
    (* Second program: *)
    nn = 2^24; k = 1; P = 2; Union@ Reap[While[j = 2; While[P^j < nn, Sow[P^j]; j++]; j > 2, k++; P *= Prime[k]]][[-1, 1]] (* Michael De Vlieger, Oct 04 2023 *)

Formula

Sum_{n>=1} 1/a(n) = Sum_{k>=1} 1/(A002110(k)*(A002110(k)-1)) = 0.53450573145072369022... . - Amiram Eldar, Mar 10 2024

A322786 Irregular triangle read by rows where T(n,k) is the number of multiset partitions of a multiset with d = A027750(n,k) copies of each integer from 1 to n/d.

Original entry on oeis.org

1, 2, 2, 5, 3, 15, 9, 5, 52, 7, 203, 66, 31, 11, 877, 15, 4140, 712, 109, 22, 21147, 686, 30, 115975, 10457, 339, 42, 678570, 56, 4213597, 198091, 27036, 6721, 1043, 77, 27644437, 101, 190899322, 4659138, 2998, 135, 1382958545, 1688360, 58616, 176
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Examples

			Triangle begins:
        1
        2       2
        5       3
       15       9       5
       52       7
      203      66      31      11
      877      15
     4140     712     109      22
    21147     686      30
   115975   10457     339      42
   678570      56
  4213597  198091   27036    6721    1043      77
For example, row 4 counts the following multiset partitions.
  {{1,2,3,4}}        {{1,1,2,2}}        {{1,1,1,1}}
  {{1},{2,3,4}}      {{1},{1,2,2}}      {{1},{1,1,1}}
  {{1,2},{3,4}}      {{1,1},{2,2}}      {{1,1},{1,1}}
  {{1,3},{2,4}}      {{1,2},{1,2}}      {{1},{1},{1,1}}
  {{1,4},{2,3}}      {{2},{1,1,2}}      {{1},{1},{1},{1}}
  {{2},{1,3,4}}      {{1},{1},{2,2}}
  {{3},{1,2,4}}      {{1},{2},{1,2}}
  {{4},{1,2,3}}      {{2},{2},{1,1}}
  {{1},{2},{3,4}}    {{1},{1},{2},{2}}
  {{1},{3},{2,4}}
  {{1},{4},{2,3}}
  {{2},{3},{1,4}}
  {{2},{4},{1,3}}
  {{3},{4},{1,2}}
  {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • Mathematica
    u[n_,k_]:=u[n,k]=If[n==1,1,Sum[u[n/d,d],{d,Select[Rest[Divisors[n]],#<=k&]}]];
    Table[Table[u[Array[Prime,n/d,1,Times]^d,Array[Prime,n/d,1,Times]^d],{d,Divisors[n]}],{n,10}]
  • PARI
    \\ needs T(n,k) from A219727.
    Row(n)={[T(d,n/d) | d<-divisors(n)]}
    { for(n=1, 12, print(Row(n))) } \\ Andrew Howroyd, Jan 11 2020

Formula

T(n,k) = A001055(A002110(n/d)^d), where d = A027750(n,k).
T(n,k) = A219727(d, n/d), where d = A027750(n, k). - Andrew Howroyd, Jan 11 2020

Extensions

Edited by Peter Munn, Mar 05 2025

A322787 Irregular triangle read by rows where T(n,k) is the number of non-isomorphic multiset partitions of a multiset with d = A027750(n, k) copies of each integer from 1 to n/d.

Original entry on oeis.org

1, 2, 2, 3, 3, 5, 7, 5, 7, 7, 11, 23, 21, 11, 15, 15, 22, 79, 66, 22, 30, 162, 30, 42, 274, 192, 42, 56, 56, 77, 1003, 1636, 1338, 565, 77, 101, 101, 135, 3763, 1579, 135, 176, 19977, 10585, 176, 231, 14723, 43686, 4348, 231, 297, 297, 385, 59663, 298416, 82694, 11582, 385
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Examples

			Triangle begins:
   1
   2   2
   3   3
   5   7   5
   7   7
  11  23  21  11
  15  15
  22  79  66  22
  30 162  30
  42 274 192  42
Non-isomorphic representatives of the multiset partitions counted under row 6:
{123456}           {112233}           {111222}           {111111}
{1}{23456}         {1}{12233}         {1}{11222}         {1}{11111}
{12}{3456}         {11}{2233}         {11}{1222}         {11}{1111}
{123}{456}         {112}{233}         {111}{222}         {111}{111}
{1}{2}{3456}       {12}{1233}         {112}{122}         {1}{1}{1111}
{1}{23}{456}       {123}{123}         {12}{1122}         {1}{11}{111}
{12}{34}{56}       {1}{1}{2233}       {1}{1}{1222}       {11}{11}{11}
{1}{2}{3}{456}     {1}{12}{233}       {1}{11}{222}       {1}{1}{1}{111}
{1}{2}{34}{56}     {11}{22}{33}       {11}{12}{22}       {1}{1}{11}{11}
{1}{2}{3}{4}{56}   {11}{23}{23}       {1}{12}{122}       {1}{1}{1}{1}{11}
{1}{2}{3}{4}{5}{6} {1}{2}{1233}       {1}{2}{1122}       {1}{1}{1}{1}{1}{1}
                   {12}{13}{23}       {12}{12}{12}
                   {1}{23}{123}       {2}{11}{122}
                   {2}{11}{233}       {1}{1}{1}{222}
                   {1}{1}{2}{233}     {1}{1}{12}{22}
                   {1}{1}{22}{33}     {1}{1}{2}{122}
                   {1}{1}{23}{23}     {1}{2}{11}{22}
                   {1}{2}{12}{33}     {1}{2}{12}{12}
                   {1}{2}{13}{23}     {1}{1}{1}{2}{22}
                   {1}{2}{3}{123}     {1}{1}{2}{2}{12}
                   {1}{1}{2}{2}{33}   {1}{1}{1}{2}{2}{2}
                   {1}{1}{2}{3}{23}
                   {1}{1}{2}{2}{3}{3}
		

Crossrefs

Programs

  • PARI
    \\ See A318951 for RowSumMats
    row(n)={my(d=divisors(n)); vector(#d, i, RowSumMats(n/d[i], n, d[i]))}
    { for(n=1, 15, print(row(n))) } \\ Andrew Howroyd, Feb 02 2022

Extensions

Terms a(28) and beyond from Andrew Howroyd, Feb 02 2022
Name edited by Peter Munn, Mar 05 2025

A322789 Irregular triangle read by rows where T(n,k) is the number of non-isomorphic uniform multiset partitions of a multiset with d = A027750(n,k) copies of each integer from 1 to n/d.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 4, 3, 2, 2, 4, 7, 6, 4, 2, 2, 4, 10, 8, 4, 3, 7, 3, 4, 12, 8, 4, 2, 2, 6, 32, 35, 31, 18, 6, 2, 2, 4, 21, 10, 4, 4, 47, 29, 4, 5, 49, 72, 19, 5, 2, 2, 6, 81, 170, 71, 24, 6, 2, 2, 6, 138, 478, 296, 32, 6, 4, 429, 76, 4, 4, 64, 14, 4
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A multiset partition is uniform if all parts have the same size.

Examples

			Triangle begins:
  1
  2  2
  2  2
  3  4  3
  2  2
  4  7  6  4
  2  2
  4 10  8  4
  3  7  3
  4 12  8  4
Non-isomorphic representatives of the multiset partitions counted under row 6:
{123456}           {112233}           {111222}           {111111}
{123}{456}         {112}{233}         {111}{222}         {111}{111}
{12}{34}{56}       {123}{123}         {112}{122}         {11}{11}{11}
{1}{2}{3}{4}{5}{6} {11}{22}{33}       {11}{12}{22}       {1}{1}{1}{1}{1}{1}
                   {11}{23}{23}       {12}{12}{12}
                   {12}{13}{23}       {1}{1}{1}{2}{2}{2}
                   {1}{1}{2}{2}{3}{3}
		

Crossrefs

Extensions

Terms a(28) and beyond from Andrew Howroyd, Feb 03 2022
Name edited by Peter Munn, Mar 05 2025
Showing 1-10 of 15 results. Next