cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A024451 a(n) is the numerator of Sum_{i = 1..n} 1/prime(i).

Original entry on oeis.org

0, 1, 5, 31, 247, 2927, 40361, 716167, 14117683, 334406399, 9920878441, 314016924901, 11819186711467, 492007393304957, 21460568175640361, 1021729465586766997, 54766551458687142251, 3263815694539731437539, 201015517717077830328949, 13585328068403621603022853
Offset: 0

Views

Author

Keywords

Comments

Arithmetic derivative of p#: a(n) = A003415(A002110(n)). - Reinhard Zumkeller, Feb 25 2002
(n-1)-st elementary symmetric functions of first n primes; see Mathematica section. - Clark Kimberling, Dec 29 2011
Denominators of the harmonic mean of the first n primes; A250130 gives the numerators. - Colin Barker, Nov 14 2014
Let Pn(n) = A002110 denote the primorial function. The average number of distinct prime factors <= prime(n) in the natural numbers up to Pn(n) is equal to Sum_{i = 1..n} 1/prime(i). - Jamie Morken, Sep 17 2018
Conjecture: All terms are squarefree numbers. - Nicolas Bělohoubek, Apr 13 2022
The above conjecture would imply that for n > 0, gcd(a(n), A369651(n)) = 1. See corollary 2 on the page 4 of Ufnarovski-Åhlander paper. - Antti Karttunen, Jan 31 2024
Apart from the initial 0, a subsequence of A048103. Proof: For all primes p, when i >= A000720(p), neither p itself nor p^p divides a(i) [implied by Henry Bottomley's Sep 27 2006 formula], but neither does p^p divide a(i) when 0 < i < A000720(p), as then p^p > a(i). See A074107, which gives an upper bound for this sequence. - Antti Karttunen, Nov 19 2024

Examples

			0/1, 1/2, 5/6, 31/30, 247/210, 2927/2310, 40361/30030, 716167/510510, 14117683/9699690, ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Sect. 2.2.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Sect. VII.28.

Crossrefs

Denominators are A002110.
Row sums of A077011 and A258566.
Subsequence of A048103 (after the initial 0).
Cf. A053144 (a lower bound), A074107 (an upper bound).
Cf. A109628 (indices k where a(k) is prime), A244622 (corresponding primes), A244621 (a(n) mod 12).
Cf. A369972 (k where prime(1+k)|a(k)), A369973 (corresponding primorials), A293457 (corresponding primes), A377992 (antiderivatives of the terms > 1 of this sequence).

Programs

  • Magma
    [ Numerator(&+[ NthPrime(k)^-1: k in [1..n]]): n in [1..18] ];  // Bruno Berselli, Apr 11 2011
    
  • Maple
    h:= n-> add(1/(ithprime(i)),i=1..n);
    t1:=[seq(h(n),n=0..50)];
    t1a:=map(numer,t1); # A024451
    t1b:=map(denom,t1); # A002110 - N. J. A. Sloane, Apr 25 2014
  • Mathematica
    a[n_] := Numerator @ Sum[1/Prime[i], {i, n}]; Array[a,18]  (* Jean-François Alcover, Apr 11 2011 *)
    f[k_] := Prime[k]; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}] (* A024451 *)
    (* Clark Kimberling, Dec 29 2011 *)
    Numerator[Accumulate[1/Prime[Range[20]]]] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    a(n) = numerator(sum(i=1, n, 1/prime(i))); \\ Michel Marcus, Sep 18 2018
    
  • Python
    from sympy import prime
    from fractions import Fraction
    def a(n): return sum(Fraction(1, prime(k)) for k in range(1, n+1)).numerator
    print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 12 2021
    
  • Python
    from math import prod
    from sympy import prime
    def A024451(n):
        q = prod(plist:=tuple(prime(i) for i in range(1,n+1)))
        return sum(q//p for p in plist) # Chai Wah Wu, Nov 03 2022

Formula

Limit_{n->oo} (Sum_{p <= n} 1/p - log log n) = 0.2614972... = A077761.
a(n) = (Product_{i=1..n} prime(i))*(Sum_{i=1..n} 1/prime(i)). - Benoit Cloitre, Jan 30 2002
(n+1)-st elementary symmetric function of the first n primes.
a(n) = a(n-1)*A000040(n) + A002110(n-1). - Henry Bottomley, Sep 27 2006
From Antti Karttunen, Jan 31 2024, Feb 08 2024 and Nov 19 2024: (Start)
a(0) = 0, for n > 0, a(n) = 2*A203008(n-1) + A070826(n).
For n > 0, a(n) = A327860(A143293(n-1)).
For n > 0, a(n) = A348301(n) + A002110(n).
For n = 3..175, a(n) = A356253(A002110(n)). [See comments in A356253.]
For n >= 0, A053144(n) <= a(n) <= A074107(n) < A070826(1+n).
(End)

Extensions

a(0)=0 prepended by Alois P. Heinz, Jun 26 2015

A014701 Number of multiplications to compute n-th power by the Chandah-sutra method.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 5, 6, 6, 7, 6, 7, 7, 8, 6, 7, 7, 8, 7, 8, 8, 9, 6, 7, 7, 8, 7, 8, 8, 9, 7, 8, 8, 9, 8, 9, 9, 10, 6, 7, 7, 8, 7, 8, 8, 9, 7, 8, 8, 9, 8, 9, 9, 10, 7, 8, 8, 9, 8, 9, 9
Offset: 1

Views

Author

James Kilfiger (jamesk(AT)maths.warwick.ac.uk)

Keywords

Comments

In other words, number of steps to reach 1 starting from n and using the process: x -> x-1 if n is odd and x -> x/2 otherwise.
a(n) = number of 0's + twice number of 1's (disregarding the leading digit 1) in the binary expansion of n, i.e., A007088(n). - Lekraj Beedassy, May 28 2010
From Daniel Forgues, Jul 31 2012: (Start)
For the binary Fibonacci rabbits sequence (A036299) (cf. OEIS Wiki link below) we have the substitution/concatenation rule: a(n), n >= 3, may be obtained by the concatenation of a(n-1) and a(n-2), with a(1) = 0, a(2) = 1. Thus, using . (dot) as the concatenation operator, we have the recursive substitution/concatenation
a(n) = a(n-0)
a(n) = a(n-1).a(n-2)
a(n) = a(n-2).a(n-3).a(n-3).a(n-4)
a(n) = a(n-3).a(n-4).a(n-4).a(n-5).a(n-4).a(n-5).a(n-5).a(n-6)
which suggests the sequence
{0}
{1, 2}
{2, 3, 3, 4}
{3, 4, 4, 5, 4, 5, 5, 6}
whose concatenation gives A014701 (this sequence).
Number of multiplications to compute n-th power by the Chandah-sutra method, also called left-to-right binary exponentiation:
x^1 = x^( 1_2) = (x) (0 prod)
x^2 = x^( 10_2) = (x^2) (1 prod)
x^3 = x^( 11_2) = (x^2) * (x) (2 prod)
x^4 = x^( 100_2) = (x^2)^2 (2 prod)
x^5 = x^( 101_2) = (x^2)^2 * (x) (3 prod)
x^6 = x^( 110_2) = (x^2)^2 * (x^2) (3 prod)
x^7 = x^( 111_2) = (x^2)^2 * (x^2) * (x) (4 prod)
x^8 = x^(1000_2) = ((x^2)^2)^2 (3 prod) (End)
From Ya-Ping Lu, Mar 03 2021: (Start)
Index at which record m occurs is A052955(m).
First appearance of m in the sequence (or the record value m) is at n = 2^(m/2 + 1) - 1 for even m, and at n = 3*2^((m - 1)/2) - 1 for odd m.
The last appearance of m in the sequence is at n = 2^m. (End)
a(n) is the digit sum of n-1 in bijective base-2. Since the Fibonacci number F(m) can be defined as the number of ways to compose m as the sum of 1s and 2s, we get that m appears F(m) times in the sequence. - Oscar Cunningham, Apr 14 2024
Conjecture: a(n+1) is the minimal number of steps to go from 0 to n, by choosing before each step, after the first step, whether to keep the same step length or double it. The initial step length is 1. - Jean-Marc Rebert, May 15 2025

Examples

			5 -> 4 -> 2 -> 1 so 3 steps are needed to reach 1 hence a(5)=3; 9 -> 8 -> 4 -> 2 -> 1 hence a(9)=4.
		

Crossrefs

Programs

  • Haskell
    a014701 1 = 0
    a014701 n = a007953 $ a007931 (n - 1)
    -- Reinhard Zumkeller, Oct 26 2012
    
  • Maple
    A014701 := proc(n) local j,k; j := n; k := 0; while(j>1) do if j mod 2=1 then j := j-1 else j := j/2 fi; k := k+1 od end;
    # second Maple program:
    a:= n-> add(i+1, i=Bits[Split](n))-2:
    seq(a(n), n=1..128);  # Alois P. Heinz, Aug 30 2021
  • Mathematica
    a[n_] := DigitCount[n, 2] /. {x_, y_} -> 2x + y - 2; Array[a, 100] (* Robert G. Wilson v, Jul 31 2012 *)
  • PARI
    a(n)=hammingweight(n)+logint(n,2)-1 \\ Charles R Greathouse IV, Dec 29 2016
    
  • Python
    def a(n):
        if n==1:
            return 0
        return a(n//2)+1+n%2
    for i in range(1,60):
        print(a(i), end=", ")
    # Pablo Hueso Merino, Oct 28 2020

Formula

a(n) = A056792(n) - 1 = A056791(n) - 2.
a(n) = floor(log_2(n)) + (number of 1's in binary representation of n) - 1. - Corrected (- 1 at end) by Daniel Forgues, Aug 01 2012
a(2^n) = n, a(2^n-1) = 2*(n-1), and for n >= 2, log_2(n) <= a(n) <= 2*log_2(n) - 1. - Robert FERREOL, Oct 01 2014
Let u(1) = 1, u(2*n) = u(n)+1, u(2*n+1) = u(2*n)+1; then a(1) = 0 and a(n) = u(n-1). - Benoit Cloitre, Dec 19 2002
G.f.: -2/(1-x) + (1/(1-x)) * Sum_{k>=0} (2*x^2^k + x^2^(k+1))/(1+x^2^k). - Ralf Stephan, Aug 15 2003
From {0}, apply the substitution rule (n -> n+1, n+2) repeatedly, giving {{0}, {1, 2}, {2, 3, 3, 4}, {3, 4, 4, 5, 4, 5, 5, 6}, ...} and concatenate. - Daniel Forgues, Jul 31 2012
For n > 1: a(n) = A007953(A007931(n-1)). - Reinhard Zumkeller, Oct 26 2012
a(n) >= A003313(n). - Charles R Greathouse IV, Jan 03 2018
a(n) = a(floor(n/2)) + 1 + (n mod 2) for n > 1. - Pablo Hueso Merino, Oct 28 2020
a(n+1) = max_{1<=i<=n} (H(i) + H(n-i)) where H(n) denotes the Hamming weight of n (A000120(n)). See Lemma 8 in Gruber/Holzer 2021 article. - Hermann Gruber, Jun 26 2024

A372695 Cubefull numbers that are not prime powers.

Original entry on oeis.org

216, 432, 648, 864, 1000, 1296, 1728, 1944, 2000, 2592, 2744, 3375, 3456, 3888, 4000, 5000, 5184, 5488, 5832, 6912, 7776, 8000, 9261, 10000, 10125, 10368, 10648, 10976, 11664, 13824, 15552, 16000, 16875, 17496, 17576, 19208, 20000, 20736, 21296, 21952, 23328, 25000
Offset: 1

Views

Author

Michael De Vlieger, May 14 2024

Keywords

Comments

Numbers k such that rad(k)^3 | k and omega(k) > 1. In other words, numbers with at least 2 distinct prime factors whose prime power factors have exponents that exceed 2.
Proper subset of the following sequences: A001694, A036966, A126706, A286708.
Superset of A372841.
Smallest term k with omega(k) = m is k = A002110(m)^3 = A115964(m).

Examples

			Table of smallest 12 terms and instances of omega(a(n)) = m for m = 2..4
    n      a(n)
  ------------------------
    1      216 = 2^3 * 3^3
    2      432 = 2^4 * 3^3
    3      648 = 2^3 * 3^4
    4      864 = 2^5 * 3^3
    5     1000 = 2^3 * 5^3
    6     1296 = 2^4 * 3^4
    7     1728 = 2^6 * 3^3
    8     1944 = 2^3 * 3^5
    9     2000 = 2^4 * 5^3
   10     2592 = 2^5 * 3^4
   11     2744 = 2^3 * 7^3
   12     3375 = 3^3 * 5^3
  ...
   43    27000 = 2^3 * 3^3 * 5^3
  ...
  587  9261000 = 2^3 * 3^3 * 5^3 * 7^3
		

Crossrefs

Programs

  • Mathematica
    nn = 25000; Rest@ Select[Union@ Flatten@ Table[a^5 * b^4 * c^3, {c, Surd[nn, 3]}, {b, Surd[nn/(c^3), 4]}, {a, Surd[nn/(b^4 * c^3), 5]}], Not@*PrimePowerQ]
  • Python
    from math import gcd
    from sympy import primepi, integer_nthroot, factorint
    def A372695(n):
        def f(x):
            c = n+1+x+sum(primepi(integer_nthroot(x, k)[0]) for k in range(3, x.bit_length()))
            for w in range(1,integer_nthroot(x,5)[0]+1):
                if all(d<=1 for d in factorint(w).values()):
                    for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1):
                        if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()):
                            c -= integer_nthroot(z//y**4,3)[0]
            return c
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024

Formula

Intersection of A036966 and A024619.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2*(p-1))) - Sum_{p prime} 1/(p^2*(p-1)) - 1 = A065483 - A152441 - 1 = 0.0188749045... . - Amiram Eldar, May 17 2024

A115963 Numerator of Sum_{i=1..n} 1/prime(i)^3.

Original entry on oeis.org

1, 35, 4591, 1601713, 2141141003, 4716413174591, 23198819007792583, 159253748925534977797, 1938552948676080555065099, 47290471293028435532185602511, 1409101231790431848106470385672201
Offset: 1

Views

Author

Jonathan Vos Post, Mar 14 2006

Keywords

Comments

Denominators = A115964. See also: A024451 Numerator of Sum_{i=1..n} 1/prime(i). A002110 Primorial [denominator of Numerator of Sum_{i=1..n} 1/prime(i)]. A061015 Numerator of Sum_{i=1..n} 1/prime(i)^2.

Examples

			1/8, 35/216, 4591/27000, 1601713/9261000, 2141141003/12326391000, 4716413174591/27081081027000.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[1/Prime[Range[20]]^3]//Numerator (* Harvey P. Dale, Dec 30 2024 *)

Formula

a(n) = Numerator of Sum_{i=1..n} 1/A000040(i)^3.

A241189 Numerator of Sum_{i=1..n} 1/(prime(i)*prime(i+1)).

Original entry on oeis.org

1, 7, 11, 127, 1693, 29243, 561623, 13019431, 379503437, 11809225121, 438235268123, 18007758091069, 775817745542929, 36524284093223105, 1938403609207158571, 2160165866032831207, 131893095784520401909, 8844093116997411126541, 628373208972323386101329, 45900898298568589325230523
Offset: 1

Views

Author

N. J. A. Sloane, Apr 25 2014, based on a suggestion from Timothy Varghese

Keywords

Comments

a(371) has 1002 decimal digits. - Michael De Vlieger, Jan 27 2016

Examples

			1/6, 7/30, 11/42, 127/462, 1693/6006, 29243/102102, 561623/1939938, 13019431/44618574, 379503437/1293938646, 11809225121/40112098026, 438235268123/1484147626962, ...
		

Crossrefs

Programs

  • Maple
    g:= n-> add(1/(ithprime(i)*ithprime(i+1)),i=1..n);
    t1:=[seq(g(n),n=1..20)];
    t1a:=map(numer,t1); # A241189
    t1b:=map(denom,t1); # A241190
  • Mathematica
    Table[Numerator@ Sum[1/(Prime[i + 1] Prime@ i), {i, n}], {n, 20}] (* Michael De Vlieger, Jan 27 2016 *)
    Accumulate[1/#&/@(Times@@@Partition[Prime[Range[25]],2,1])]//Numerator (* Harvey P. Dale, Mar 14 2023 *)

A304117 If n = Product (p_j^k_j) then a(n) = Product (pi(p_j)*k_j), where pi() = A000720.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 5, 4, 6, 4, 6, 4, 7, 4, 8, 6, 8, 5, 9, 6, 6, 6, 6, 8, 10, 6, 11, 5, 10, 7, 12, 8, 12, 8, 12, 9, 13, 8, 14, 10, 12, 9, 15, 8, 8, 6, 14, 12, 16, 6, 15, 12, 16, 10, 17, 12, 18, 11, 16, 6, 18, 10, 19, 14, 18, 12, 20, 12, 21, 12, 12, 16, 20, 12, 22, 12
Offset: 1

Views

Author

Ilya Gutkovskiy, May 06 2018

Keywords

Examples

			a(36) = 8 because 36 = 2^2*3^2 = prime(1)^2*prime(2)^2 and 1*2*2*2 = 8.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ (PrimePi[#[[1]]] #[[2]] & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 1, 80}]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = primepi(f[k,1])*f[k,2]; f[k, 2] = 1); factorback(f); \\ Michel Marcus, May 06 2018

Formula

a(n) = A005361(n)*A156061(n).
a(p^k) = A000720(p)*k where p is a prime.
a(A002110(m)^k) = k^m*m!.
As an example:
a(A000040(k)) = k.
a(A006450(k)) = A000040(k).
a(A001248(k)) = a(A031215(k)) = A005843(k).
a(A030078(k)) = a(A031336(k)) = A008585(k)
a(A061742(k)) = A000165(k).
a(A115964(k)) = A032031(k).
a(A002110(k)) = A000142(k).
a(A080696(k)) = A002110(k).

A304037 If n = Product (p_j^k_j) then a(n) = Sum (pi(p_j)^k_j), where pi() = A000720.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 4, 1, 4, 4, 5, 3, 6, 5, 5, 1, 7, 5, 8, 4, 6, 6, 9, 3, 9, 7, 8, 5, 10, 6, 11, 1, 7, 8, 7, 5, 12, 9, 8, 4, 13, 7, 14, 6, 7, 10, 15, 3, 16, 10, 9, 7, 16, 9, 8, 5, 10, 11, 17, 6, 18, 12, 8, 1, 9, 8, 19, 8, 11, 8, 20, 5, 21, 13, 11, 9, 9, 9, 22, 4, 16, 14, 23, 7, 10, 15, 12, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, May 05 2018

Keywords

Examples

			a(72) = 5 because 72 = 2^3*3^2 = prime(1)^3*prime(2)^2 and 1^3 + 2^2 = 5.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Plus @@ (PrimePi[#[[1]]]^#[[2]]& /@ FactorInteger[n]); a[1] = 0; Table[a[n], {n, 1, 88}]

Formula

If gcd(u,v) = 1 then a(u*v) = a(u) + a(v).
a(p^k) = A000720(p)^k where p is a prime.
a(A002110(m)^k) = 1^k + 2^k + ... + m^k.
As an example:
a(A000040(k)) = k.
a(A006450(k)) = A000040(k).
a(A038580(k)) = A006450(k).
a(A001248(k)) = a(A011757(k)) = A000290(k).
a(A030078(k)) = a(A055875(k)) = A000578(k).
a(A002110(k)) = a(A011756(k)) = A000217(k).
a(A061742(k)) = A000330(k).
a(A115964(k)) = A000537(k).
a(A080696(k)) = A007504(k).
a(A076954(k)) = A001923(k).

A356014 Consider the exponents in the prime factorization of n, and replace each run of k consecutive e's by a unique e; the resulting list corresponds to the exponents in the prime factorization of a(n).

Original entry on oeis.org

1, 2, 3, 4, 3, 2, 3, 8, 9, 10, 3, 12, 3, 10, 3, 16, 3, 18, 3, 20, 21, 10, 3, 24, 9, 10, 27, 20, 3, 2, 3, 32, 21, 10, 3, 4, 3, 10, 21, 40, 3, 10, 3, 20, 45, 10, 3, 48, 9, 50, 21, 20, 3, 54, 21, 40, 21, 10, 3, 12, 3, 10, 63, 64, 21, 10, 3, 20, 21, 10, 3, 72, 3
Offset: 1

Views

Author

Rémy Sigrist, Jul 23 2022

Keywords

Comments

We ignore the exponents (all 0's) for the prime numbers beyond the greatest prime factor of n.
This sequence operates on prime exponents as A090079 and A337864 operate on binary and decimal digits, respectively.

Examples

			For n = 99:
- 99 = 11^1 * 7^0 * 5^0 * 3^2 * 2^0,
- the list of exponents is: 1 0 0 2 0,
- compressing consecutive values, we obtain: 1 0 2 0,
- so a(99) = 7^1 * 5^0 * 3^2 * 2^0 = 63.
		

Crossrefs

Programs

  • PARI
    a(n) = { my (v=1, e=-1, k=0); forprime (p=2, oo, if (n==1, return (v), if (e!=e=valuation(n,p), v*=prime(k++)^e); n/=p^e)) }

Formula

a(a(n)) = a(n).
a(n^k) = a(n)^k for any k >= 0.
a(n) = A319521(A356008(n)).
A007814(a(n)) = A007814(n).
a(n) = 3 iff n belongs to A294674 \ {1}.
a(n) = 4 iff n belongs to A061742 \ {1}.
a(n) = 8 iff n belongs to A115964.

A361810 a(n) is the sum of divisors of n that are both infinitary and exponential.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 30, 25, 26, 30, 28, 29, 30, 31, 34, 33, 34, 35, 36, 37, 38, 39, 50, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 60, 55, 70, 57, 58, 59, 60, 61, 62, 63, 68, 65, 66, 67, 68
Offset: 1

Views

Author

Amiram Eldar, Mar 25 2023

Keywords

Comments

The number of these divisors is A359411(n).
The indices of records of a(n)/n are the primorials (A002110) cubed, i.e., 1 and the terms of A115964.

Examples

			a(8) = 10 since 8 has 2 divisors that are both infinitary and exponential, 2 and 8, and 2 + 8 = 10.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &, BitOr[#, e] == e &]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(p,e) = sumdiv(e, d, p^d*(bitor(d, e) == e));
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, s(f[i, 1], f[i, 2])); }

Formula

Multiplicative with a(p^e) = Sum_{d|e, bitor(d, e) == e} p^d.
a(n) >= n, with equality if and only if n is in A138302.
limsup_{n->oo} a(n)/n = Product_{p prime} (1 + 1/p^2) = 15/Pi^2 (A082020).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((1 - 1/p)*(1 + Sum_{e>=1} Sum_{d|e, bitor(d, e) == e} p^(d-2*e))) = 0.51015879911178031024... .

A359412 Numbers with a record number of divisors that are both infinitary and exponential.

Original entry on oeis.org

1, 8, 216, 27000, 9261000, 12326391000, 27081081027000, 110924107886592000, 544970142046826496000, 3737950204299182936064000, 45479640135708158783090688000, 1109202943269786284560798789632000, 33044264882950203203350756741926912000, 1673791149116076642859325881248823873536000
Offset: 1

Views

Author

Amiram Eldar, Dec 30 2022

Keywords

Comments

Indices of records in A359411.
a(2)-a(7) are the first 6 terms of A115964.
The first 15 terms are cubes. Are there noncubes in this sequence?
The corresponding record values are 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, ... . Apparently, this sequence of records is the powers of 2 (A000079).

Crossrefs

Subsequence of A025487.
Similar sequences: A037992, A318278.

Programs

  • Mathematica
    s[n_] := DivisorSum[n, 1 &, BitAnd[n, #] == # &]; f[p_, e_] := s[e]; d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n];
    v = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]];
    seq = {}; dm = 0; Do[If[(dk = d[v[[k]]]) > dm, dm = dk; AppendTo[seq, v[[k]]]], {k, 1, Length[v]}]; seq
Showing 1-10 of 12 results. Next