cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A322784 Number of multiset partitions of uniform multisets of size n whose union is an initial interval of positive integers.

Original entry on oeis.org

1, 1, 4, 8, 29, 59, 311, 892, 4983, 21863, 126813, 678626, 4446565, 27644538, 195561593, 1384705697, 10613378402, 82864870101, 686673571479, 5832742205547, 51897707277698, 474889512098459, 4514467567213008, 44152005855085601, 446355422070799305, 4638590359349994120
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A multiset is uniform if all multiplicities are equal.
Also the number of factorizations into factors > 1 of primorial powers k in A100778 with sum of prime indices A056239(k) equal to n.
a(n) is the number of nonequivalent nonnegative integer matrices without zero rows or columns with equal column sums and total sum n up to permutation of rows. - Andrew Howroyd, Jan 11 2020

Examples

			The a(1) = 1 through a(4) = 29 multiset partitions:
  {{1}}   {{1,1}}     {{1,1,1}}       {{1,1,1,1}}
          {{1,2}}     {{1,2,3}}       {{1,1,2,2}}
         {{1},{1}}   {{1},{1,1}}      {{1,2,3,4}}
         {{1},{2}}   {{1},{2,3}}     {{1},{1,1,1}}
                     {{2},{1,3}}     {{1,1},{1,1}}
                     {{3},{1,2}}     {{1},{1,2,2}}
                    {{1},{1},{1}}    {{1,1},{2,2}}
                    {{1},{2},{3}}    {{1,2},{1,2}}
                                     {{1},{2,3,4}}
                                     {{1,2},{3,4}}
                                     {{1,3},{2,4}}
                                     {{1,4},{2,3}}
                                     {{2},{1,1,2}}
                                     {{2},{1,3,4}}
                                     {{3},{1,2,4}}
                                     {{4},{1,2,3}}
                                    {{1},{1},{1,1}}
                                    {{1},{1},{2,2}}
                                    {{1},{2},{1,2}}
                                    {{1},{2},{3,4}}
                                    {{1},{3},{2,4}}
                                    {{1},{4},{2,3}}
                                    {{2},{2},{1,1}}
                                    {{2},{3},{1,4}}
                                    {{2},{4},{1,3}}
                                    {{3},{4},{1,2}}
                                   {{1},{1},{1},{1}}
                                   {{1},{1},{2},{2}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • Mathematica
    u[n_,k_]:=u[n,k]=If[n==1,1,Sum[u[n/d,d],{d,Select[Rest[Divisors[n]],#<=k&]}]];
    Table[Sum[u[Array[Prime,d,1,Times]^(n/d),Array[Prime,d,1,Times]^(n/d)],{d,Divisors[n]}],{n,12}]

Formula

a(n) = Sum_{d|n} A001055(A002110(n/d)^d).
a(n) = Sum_{d|n} A219727(n/d, d). - Andrew Howroyd, Jan 11 2020

Extensions

a(14)-a(15) from Alois P. Heinz, Jan 16 2019
Terms a(16) and beyond from Andrew Howroyd, Jan 11 2020

A322788 Irregular triangle read by rows where T(n,k) is the number of uniform multiset partitions of a multiset with d = A027750(n,k) copies of each integer from 1 to n/d.

Original entry on oeis.org

1, 2, 2, 2, 2, 5, 4, 3, 2, 2, 27, 11, 6, 4, 2, 2, 142, 29, 8, 4, 282, 12, 3, 1073, 101, 8, 4, 2, 2, 32034, 1581, 234, 75, 20, 6, 2, 2, 136853, 2660, 10, 4, 1527528, 1985, 91, 4, 4661087, 64596, 648, 20, 5, 2, 2, 227932993, 1280333, 41945, 231, 28, 6
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A multiset partition is uniform if all parts have the same size.

Examples

			Triangle begins:
     1
     2    2
     2    2
     5    4    3
     2    2
    27   11    6    4
     2    2
   142   29    8    4
   282   12    3
  1073  101    8    4
The multiset partitions counted under row 6:
  {123456}          {112233}          {111222}          {111111}
  {123}{456}        {112}{233}        {111}{222}        {111}{111}
  {124}{356}        {113}{223}        {112}{122}        {11}{11}{11}
  {125}{346}        {122}{133}        {11}{12}{22}      {1}{1}{1}{1}{1}{1}
  {126}{345}        {123}{123}        {12}{12}{12}
  {134}{256}        {11}{22}{33}      {1}{1}{1}{2}{2}{2}
  {135}{246}        {11}{23}{23}
  {136}{245}        {12}{12}{33}
  {145}{236}        {12}{13}{23}
  {146}{235}        {13}{13}{22}
  {156}{234}        {1}{1}{2}{2}{3}{3}
  {12}{34}{56}
  {12}{35}{46}
  {12}{36}{45}
  {13}{24}{56}
  {13}{25}{46}
  {13}{26}{45}
  {14}{23}{56}
  {14}{25}{36}
  {14}{26}{35}
  {15}{23}{46}
  {15}{24}{36}
  {15}{26}{34}
  {16}{23}{45}
  {16}{24}{35}
  {16}{25}{34}
  {1}{2}{3}{4}{5}{6}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[mps[Join@@Table[Range[n/d],{d}]],SameQ@@Length/@#&]],{n,10},{d,Divisors[n]}]

Formula

T(n,k) = A322794(A002110(n/d)^d), where d = A027750(n,k).

Extensions

More terms from Alois P. Heinz, Jan 30 2019
Terms a(38) and beyond from Andrew Howroyd, Feb 03 2022
Edited by Peter Munn, Mar 05 2025

A322786 Irregular triangle read by rows where T(n,k) is the number of multiset partitions of a multiset with d = A027750(n,k) copies of each integer from 1 to n/d.

Original entry on oeis.org

1, 2, 2, 5, 3, 15, 9, 5, 52, 7, 203, 66, 31, 11, 877, 15, 4140, 712, 109, 22, 21147, 686, 30, 115975, 10457, 339, 42, 678570, 56, 4213597, 198091, 27036, 6721, 1043, 77, 27644437, 101, 190899322, 4659138, 2998, 135, 1382958545, 1688360, 58616, 176
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Examples

			Triangle begins:
        1
        2       2
        5       3
       15       9       5
       52       7
      203      66      31      11
      877      15
     4140     712     109      22
    21147     686      30
   115975   10457     339      42
   678570      56
  4213597  198091   27036    6721    1043      77
For example, row 4 counts the following multiset partitions.
  {{1,2,3,4}}        {{1,1,2,2}}        {{1,1,1,1}}
  {{1},{2,3,4}}      {{1},{1,2,2}}      {{1},{1,1,1}}
  {{1,2},{3,4}}      {{1,1},{2,2}}      {{1,1},{1,1}}
  {{1,3},{2,4}}      {{1,2},{1,2}}      {{1},{1},{1,1}}
  {{1,4},{2,3}}      {{2},{1,1,2}}      {{1},{1},{1},{1}}
  {{2},{1,3,4}}      {{1},{1},{2,2}}
  {{3},{1,2,4}}      {{1},{2},{1,2}}
  {{4},{1,2,3}}      {{2},{2},{1,1}}
  {{1},{2},{3,4}}    {{1},{1},{2},{2}}
  {{1},{3},{2,4}}
  {{1},{4},{2,3}}
  {{2},{3},{1,4}}
  {{2},{4},{1,3}}
  {{3},{4},{1,2}}
  {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • Mathematica
    u[n_,k_]:=u[n,k]=If[n==1,1,Sum[u[n/d,d],{d,Select[Rest[Divisors[n]],#<=k&]}]];
    Table[Table[u[Array[Prime,n/d,1,Times]^d,Array[Prime,n/d,1,Times]^d],{d,Divisors[n]}],{n,10}]
  • PARI
    \\ needs T(n,k) from A219727.
    Row(n)={[T(d,n/d) | d<-divisors(n)]}
    { for(n=1, 12, print(Row(n))) } \\ Andrew Howroyd, Jan 11 2020

Formula

T(n,k) = A001055(A002110(n/d)^d), where d = A027750(n,k).
T(n,k) = A219727(d, n/d), where d = A027750(n, k). - Andrew Howroyd, Jan 11 2020

Extensions

Edited by Peter Munn, Mar 05 2025

A322787 Irregular triangle read by rows where T(n,k) is the number of non-isomorphic multiset partitions of a multiset with d = A027750(n, k) copies of each integer from 1 to n/d.

Original entry on oeis.org

1, 2, 2, 3, 3, 5, 7, 5, 7, 7, 11, 23, 21, 11, 15, 15, 22, 79, 66, 22, 30, 162, 30, 42, 274, 192, 42, 56, 56, 77, 1003, 1636, 1338, 565, 77, 101, 101, 135, 3763, 1579, 135, 176, 19977, 10585, 176, 231, 14723, 43686, 4348, 231, 297, 297, 385, 59663, 298416, 82694, 11582, 385
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Examples

			Triangle begins:
   1
   2   2
   3   3
   5   7   5
   7   7
  11  23  21  11
  15  15
  22  79  66  22
  30 162  30
  42 274 192  42
Non-isomorphic representatives of the multiset partitions counted under row 6:
{123456}           {112233}           {111222}           {111111}
{1}{23456}         {1}{12233}         {1}{11222}         {1}{11111}
{12}{3456}         {11}{2233}         {11}{1222}         {11}{1111}
{123}{456}         {112}{233}         {111}{222}         {111}{111}
{1}{2}{3456}       {12}{1233}         {112}{122}         {1}{1}{1111}
{1}{23}{456}       {123}{123}         {12}{1122}         {1}{11}{111}
{12}{34}{56}       {1}{1}{2233}       {1}{1}{1222}       {11}{11}{11}
{1}{2}{3}{456}     {1}{12}{233}       {1}{11}{222}       {1}{1}{1}{111}
{1}{2}{34}{56}     {11}{22}{33}       {11}{12}{22}       {1}{1}{11}{11}
{1}{2}{3}{4}{56}   {11}{23}{23}       {1}{12}{122}       {1}{1}{1}{1}{11}
{1}{2}{3}{4}{5}{6} {1}{2}{1233}       {1}{2}{1122}       {1}{1}{1}{1}{1}{1}
                   {12}{13}{23}       {12}{12}{12}
                   {1}{23}{123}       {2}{11}{122}
                   {2}{11}{233}       {1}{1}{1}{222}
                   {1}{1}{2}{233}     {1}{1}{12}{22}
                   {1}{1}{22}{33}     {1}{1}{2}{122}
                   {1}{1}{23}{23}     {1}{2}{11}{22}
                   {1}{2}{12}{33}     {1}{2}{12}{12}
                   {1}{2}{13}{23}     {1}{1}{1}{2}{22}
                   {1}{2}{3}{123}     {1}{1}{2}{2}{12}
                   {1}{1}{2}{2}{33}   {1}{1}{1}{2}{2}{2}
                   {1}{1}{2}{3}{23}
                   {1}{1}{2}{2}{3}{3}
		

Crossrefs

Programs

  • PARI
    \\ See A318951 for RowSumMats
    row(n)={my(d=divisors(n)); vector(#d, i, RowSumMats(n/d[i], n, d[i]))}
    { for(n=1, 15, print(row(n))) } \\ Andrew Howroyd, Feb 02 2022

Extensions

Terms a(28) and beyond from Andrew Howroyd, Feb 02 2022
Name edited by Peter Munn, Mar 05 2025

A322789 Irregular triangle read by rows where T(n,k) is the number of non-isomorphic uniform multiset partitions of a multiset with d = A027750(n,k) copies of each integer from 1 to n/d.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 4, 3, 2, 2, 4, 7, 6, 4, 2, 2, 4, 10, 8, 4, 3, 7, 3, 4, 12, 8, 4, 2, 2, 6, 32, 35, 31, 18, 6, 2, 2, 4, 21, 10, 4, 4, 47, 29, 4, 5, 49, 72, 19, 5, 2, 2, 6, 81, 170, 71, 24, 6, 2, 2, 6, 138, 478, 296, 32, 6, 4, 429, 76, 4, 4, 64, 14, 4
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A multiset partition is uniform if all parts have the same size.

Examples

			Triangle begins:
  1
  2  2
  2  2
  3  4  3
  2  2
  4  7  6  4
  2  2
  4 10  8  4
  3  7  3
  4 12  8  4
Non-isomorphic representatives of the multiset partitions counted under row 6:
{123456}           {112233}           {111222}           {111111}
{123}{456}         {112}{233}         {111}{222}         {111}{111}
{12}{34}{56}       {123}{123}         {112}{122}         {11}{11}{11}
{1}{2}{3}{4}{5}{6} {11}{22}{33}       {11}{12}{22}       {1}{1}{1}{1}{1}{1}
                   {11}{23}{23}       {12}{12}{12}
                   {12}{13}{23}       {1}{1}{1}{2}{2}{2}
                   {1}{1}{2}{2}{3}{3}
		

Crossrefs

Extensions

Terms a(28) and beyond from Andrew Howroyd, Feb 03 2022
Name edited by Peter Munn, Mar 05 2025
Showing 1-5 of 5 results.