A322784 Number of multiset partitions of uniform multisets of size n whose union is an initial interval of positive integers.
1, 1, 4, 8, 29, 59, 311, 892, 4983, 21863, 126813, 678626, 4446565, 27644538, 195561593, 1384705697, 10613378402, 82864870101, 686673571479, 5832742205547, 51897707277698, 474889512098459, 4514467567213008, 44152005855085601, 446355422070799305, 4638590359349994120
Offset: 0
Keywords
Examples
The a(1) = 1 through a(4) = 29 multiset partitions: {{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}} {{1,2}} {{1,2,3}} {{1,1,2,2}} {{1},{1}} {{1},{1,1}} {{1,2,3,4}} {{1},{2}} {{1},{2,3}} {{1},{1,1,1}} {{2},{1,3}} {{1,1},{1,1}} {{3},{1,2}} {{1},{1,2,2}} {{1},{1},{1}} {{1,1},{2,2}} {{1},{2},{3}} {{1,2},{1,2}} {{1},{2,3,4}} {{1,2},{3,4}} {{1,3},{2,4}} {{1,4},{2,3}} {{2},{1,1,2}} {{2},{1,3,4}} {{3},{1,2,4}} {{4},{1,2,3}} {{1},{1},{1,1}} {{1},{1},{2,2}} {{1},{2},{1,2}} {{1},{2},{3,4}} {{1},{3},{2,4}} {{1},{4},{2,3}} {{2},{2},{1,1}} {{2},{3},{1,4}} {{2},{4},{1,3}} {{3},{4},{1,2}} {{1},{1},{1},{1}} {{1},{1},{2},{2}} {{1},{2},{3},{4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Mathematica
u[n_,k_]:=u[n,k]=If[n==1,1,Sum[u[n/d,d],{d,Select[Rest[Divisors[n]],#<=k&]}]]; Table[Sum[u[Array[Prime,d,1,Times]^(n/d),Array[Prime,d,1,Times]^(n/d)],{d,Divisors[n]}],{n,12}]
Formula
a(n) = Sum_{d|n} A219727(n/d, d). - Andrew Howroyd, Jan 11 2020
Extensions
a(14)-a(15) from Alois P. Heinz, Jan 16 2019
Terms a(16) and beyond from Andrew Howroyd, Jan 11 2020
Comments