A322786 Irregular triangle read by rows where T(n,k) is the number of multiset partitions of a multiset with d = A027750(n,k) copies of each integer from 1 to n/d.
1, 2, 2, 5, 3, 15, 9, 5, 52, 7, 203, 66, 31, 11, 877, 15, 4140, 712, 109, 22, 21147, 686, 30, 115975, 10457, 339, 42, 678570, 56, 4213597, 198091, 27036, 6721, 1043, 77, 27644437, 101, 190899322, 4659138, 2998, 135, 1382958545, 1688360, 58616, 176
Offset: 1
Examples
Triangle begins: 1 2 2 5 3 15 9 5 52 7 203 66 31 11 877 15 4140 712 109 22 21147 686 30 115975 10457 339 42 678570 56 4213597 198091 27036 6721 1043 77 For example, row 4 counts the following multiset partitions. {{1,2,3,4}} {{1,1,2,2}} {{1,1,1,1}} {{1},{2,3,4}} {{1},{1,2,2}} {{1},{1,1,1}} {{1,2},{3,4}} {{1,1},{2,2}} {{1,1},{1,1}} {{1,3},{2,4}} {{1,2},{1,2}} {{1},{1},{1,1}} {{1,4},{2,3}} {{2},{1,1,2}} {{1},{1},{1},{1}} {{2},{1,3,4}} {{1},{1},{2,2}} {{3},{1,2,4}} {{1},{2},{1,2}} {{4},{1,2,3}} {{2},{2},{1,1}} {{1},{2},{3,4}} {{1},{1},{2},{2}} {{1},{3},{2,4}} {{1},{4},{2,3}} {{2},{3},{1,4}} {{2},{4},{1,3}} {{3},{4},{1,2}} {{1},{2},{3},{4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..207 (first 50 rows)
Crossrefs
Programs
-
Mathematica
u[n_,k_]:=u[n,k]=If[n==1,1,Sum[u[n/d,d],{d,Select[Rest[Divisors[n]],#<=k&]}]]; Table[Table[u[Array[Prime,n/d,1,Times]^d,Array[Prime,n/d,1,Times]^d],{d,Divisors[n]}],{n,10}]
-
PARI
\\ needs T(n,k) from A219727. Row(n)={[T(d,n/d) | d<-divisors(n)]} { for(n=1, 12, print(Row(n))) } \\ Andrew Howroyd, Jan 11 2020
Formula
Extensions
Edited by Peter Munn, Mar 05 2025
Comments