A072779 a(n) = sigma_2(n) + phi(n) * sigma(n).
2, 8, 18, 35, 50, 74, 98, 145, 169, 202, 242, 322, 338, 394, 452, 589, 578, 689, 722, 882, 884, 970, 1058, 1330, 1271, 1354, 1540, 1722, 1682, 1876, 1922, 2373, 2180, 2314, 2452, 3003, 2738, 2890, 3044, 3650, 3362, 3652, 3698, 4242, 4238, 4234, 4418
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Divisor Function.
- Eric Weisstein's World of Mathematics, Totient Function.
Programs
-
Haskell
a072779 n = a001157 n + (a000203 n) * (a000010 n) -- Reinhard Zumkeller, Jan 15 2013
-
Mathematica
Table[DivisorSigma[2, n]+EulerPhi[n]DivisorSigma[1, n], {n, 100}]
-
PARI
a(n)=sigma(n,2)+eulerphi(n)*sigma(n) \\ Charles R Greathouse IV, May 15 2013
Formula
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(3) + Product_{p prime} (1 - 1/(p^2*(p+1))) = A002117 + A065465 = 2.083570742884... . - Amiram Eldar, Dec 03 2023
Comments