cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072779 a(n) = sigma_2(n) + phi(n) * sigma(n).

Original entry on oeis.org

2, 8, 18, 35, 50, 74, 98, 145, 169, 202, 242, 322, 338, 394, 452, 589, 578, 689, 722, 882, 884, 970, 1058, 1330, 1271, 1354, 1540, 1722, 1682, 1876, 1922, 2373, 2180, 2314, 2452, 3003, 2738, 2890, 3044, 3650, 3362, 3652, 3698, 4242, 4238, 4234, 4418
Offset: 1

Views

Author

T. D. Noe, Jul 15 2002

Keywords

Comments

This sequence is interesting because (1) a(n) >= 2 n^2, with equality only when n is prime (or 1) and (2) a(n) = 2 + 2*n^2 if and only if n is the product of two distinct primes. Note for twin primes: let n = m^2 - 1, then m-1 and m+1 are twin primes if and only if a(n) = 2 + 2*n^2. Note for the Goldbach conjecture: let n = m^2 - r^2, then m-r and m+r are primes that add to 2m if and only if a(n) = 2 + 2*n^2. See A072780 for a(n) - 2*n^2.

Crossrefs

Programs

  • Haskell
    a072779 n = a001157 n + (a000203 n) * (a000010 n)
    -- Reinhard Zumkeller, Jan 15 2013
    
  • Mathematica
    Table[DivisorSigma[2, n]+EulerPhi[n]DivisorSigma[1, n], {n, 100}]
  • PARI
    a(n)=sigma(n,2)+eulerphi(n)*sigma(n) \\ Charles R Greathouse IV, May 15 2013

Formula

a(n) = A001157(n) + A000203(n)*A000010(n). - Reinhard Zumkeller, Jan 15 2013
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(3) + Product_{p prime} (1 - 1/(p^2*(p+1))) = A002117 + A065465 = 2.083570742884... . - Amiram Eldar, Dec 03 2023