cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072820 Largest number of distinct primes to represent n as arithmetic mean.

Original entry on oeis.org

1, 1, 3, 3, 5, 4, 5, 5, 7, 6, 9, 8, 9, 9, 11, 10, 11, 11, 13, 12, 13, 13, 15, 14, 17, 15, 17, 16, 17, 17, 19, 18, 19, 19, 21, 20, 23, 21, 23, 22, 23, 23, 25, 24, 25, 25, 27, 26, 27, 27, 29, 28, 29, 28, 29, 29, 31, 30, 31, 31, 33, 32, 33, 33, 35, 33, 35, 34, 37, 35, 37, 36, 37, 37
Offset: 2

Views

Author

Reinhard Zumkeller, Jul 15 2002

Keywords

Examples

			a(20) = 13: (2+3+5+7+11+13+17+19+23+29+31+41+59)/13 = 20. [corrected by _Jean-François Alcover_, Nov 10 2020]
		

Crossrefs

Cf. A072701.

Programs

  • Maple
    sp:= proc(i) option remember; `if`(i=1, 2, sp(i-1) +ithprime(i)) end:
    b:= proc(n, i, t) local h; if n<0 then 0 elif n=0 then `if`(t=0, 1, 0) elif i=2 then `if`(n=2 and t=1, 1, 0) else h := b(n, prevprime(i), t); b(n, i, t):= `if`(h>0, h, b(n-i, prevprime(i), t-1)) fi end:
    a:= proc(n) local i, k; if n<4 then 1 else for k from 2 while sp(k)/k<=n do od: do k:= k-1; if b(k*n, nextprime(k*n -sp(k-1)-1), k)>0 then break fi od; k fi end: seq(a(n), n=2..50); # Alois P. Heinz, Aug 03 2009
  • Mathematica
    sp[i_] := sp[i] = If[i == 1, 2, sp[i - 1] + Prime[i]];
    b[n_, i_, t_] := b[n, i, t] = Module[{h}, Which[n < 0, 0, n == 0, If[t == 0, 1, 0], i == 2, If[n == 2 && t == 1, 1, 0], True, h = b[n, NextPrime[i, -1], t]; If[h > 0, h, b[n - i, NextPrime[i, -1], t - 1]]]];
    a[n_] := a[n] = Module[{k}, If[n < 4, 1, For[k = 2, sp[k]/k <= n, k++]; While[True, k = k - 1; If[b[k n, NextPrime[k n - sp[k - 1] - 1], k] > 0, Break[]]]; k]];
    Table[Print[n, " ", a[n]]; a[n], {n, 2, 100}] (* Jean-François Alcover, Nov 13 2020, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Aug 03 2009