A072821 Largest prime that can appear in any representation of n as an arithmetic mean of distinct primes.
1, 1, 7, 7, 13, 13, 23, 19, 29, 29, 43, 37, 53, 47, 71, 61, 79, 73, 103, 89, 113, 109, 139, 127, 157, 139, 179, 163, 199, 181, 223, 199, 241, 227, 271, 241, 293, 271, 317, 293, 349, 317, 379, 349, 409, 379, 439, 409, 463, 439, 503, 463, 523, 499, 571, 523, 601
Offset: 2
Keywords
Examples
a(6) = 13, as 13 is the largest prime in 6 = (5+7)/2 = (2+3+13)/3 = (2+5+11)/3 = (2+3+5+7+13)/5.
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..100
- Reinhard Zumkeller, Representing integers as arithmetic means of primes
Crossrefs
Cf. A072701.
Programs
-
Maple
sp:= proc(i) option remember; `if` (i=1, 2, sp(i-1) +ithprime(i)) end: b:= proc(n, i, t) option remember; local h; if n<0 then 0 elif n=0 then `if` (t=0, 1, 0) elif i=2 then `if` (n=2 and t=1, 2, 0) else `if` (b(n-i, prevprime(i), t-1)>0, i, b(n, prevprime(i), t)) fi end: a:= proc(n) local s, k; s:= 1; for k from 2 while sp(k)/k<=n do s:= max (s, b(k*n, nextprime (k*n -sp(k-1)-1), k)) od: s end: seq(a(n), n=2..40); # Alois P. Heinz, Aug 03 2009
-
Mathematica
sp[i_] := sp[i] = If[i == 1, 2, sp[i - 1] + Prime[i]]; b[n_, i_, t_] := b[n, i, t] = Which[n < 0, 0, n == 0, If[t == 0, 1, 0], i == 2, If[n == 2 && t == 1, 1, 0], True, If[b[n - i, NextPrime[i, -1], t - 1] > 0, i, b[n, NextPrime[i, -1], t]]]; a[n_] := Module[{s, k}, s = 1; For[k = 2, sp[k]/k <= n, k++, s = Max[s, b[k*n, NextPrime[k*n - sp[k - 1] - 1], k]]]; s]; Table[a[n], {n, 2, 60}] (* Jean-François Alcover, Feb 13 2018, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Aug 03 2009
Comments