cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072821 Largest prime that can appear in any representation of n as an arithmetic mean of distinct primes.

Original entry on oeis.org

1, 1, 7, 7, 13, 13, 23, 19, 29, 29, 43, 37, 53, 47, 71, 61, 79, 73, 103, 89, 113, 109, 139, 127, 157, 139, 179, 163, 199, 181, 223, 199, 241, 227, 271, 241, 293, 271, 317, 293, 349, 317, 379, 349, 409, 379, 439, 409, 463, 439, 503, 463, 523, 499, 571, 523, 601
Offset: 2

Views

Author

Reinhard Zumkeller, Jul 15 2002

Keywords

Comments

Thanks to John W. Layman for inspiration.

Examples

			a(6) = 13, as 13 is the largest prime in 6 = (5+7)/2 = (2+3+13)/3 = (2+5+11)/3 = (2+3+5+7+13)/5.
		

Crossrefs

Cf. A072701.

Programs

  • Maple
    sp:= proc(i) option remember; `if` (i=1, 2, sp(i-1) +ithprime(i)) end:
    b:= proc(n, i, t) option remember; local h; if n<0 then 0 elif n=0 then `if` (t=0, 1, 0) elif i=2 then `if` (n=2 and t=1, 2, 0) else `if` (b(n-i, prevprime(i), t-1)>0, i, b(n, prevprime(i), t)) fi end:
    a:= proc(n) local s, k; s:= 1; for k from 2 while sp(k)/k<=n do s:= max (s, b(k*n, nextprime (k*n -sp(k-1)-1), k)) od: s end:
    seq(a(n), n=2..40); # Alois P. Heinz, Aug 03 2009
  • Mathematica
    sp[i_] := sp[i] = If[i == 1, 2, sp[i - 1] + Prime[i]];
    b[n_, i_, t_] := b[n, i, t] = Which[n < 0, 0, n == 0, If[t == 0, 1, 0], i == 2,  If[n == 2 && t == 1, 1, 0], True, If[b[n - i, NextPrime[i, -1], t - 1] > 0, i, b[n, NextPrime[i, -1], t]]];
    a[n_] := Module[{s, k}, s = 1; For[k = 2, sp[k]/k <= n, k++, s = Max[s, b[k*n, NextPrime[k*n - sp[k - 1] - 1], k]]]; s];
    Table[a[n], {n, 2, 60}] (* Jean-François Alcover, Feb 13 2018, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Aug 03 2009