A072829 Greatest m such that Product_{k=1..n-1} (1 - k/m) <= 1/2.
2, 5, 9, 16, 23, 32, 42, 54, 68, 82, 99, 116, 135, 156, 178, 201, 226, 252, 280, 309, 340, 372, 406, 441, 477, 515, 554, 595, 637, 681, 726, 772, 820, 869, 920, 973, 1026, 1081, 1138, 1196, 1256, 1316, 1379, 1443, 1508, 1575, 1643, 1712, 1783, 1856, 1930, 2005
Offset: 2
Keywords
Examples
Thus a(7)=32 for instance implies that among 7 persons bearing the same astrological sign(extending over 30 days or so) the odds are trifle better than even for at least two of them further sharing a common birthday.
Programs
-
Mathematica
f[n_] := (k = 1; While[ Product[1 - i/k, {i, 1, (n - 1)}] <= 1/2, k++ ]; Return[k - 1]); Table[ f[n], {n, 2, 53}]
-
Python
from math import factorial, comb def A072829(n): f = factorial(n) def p(m): return comb(m,n)*f<<1 kmin, kmax = n-1, n while p(kmax) <= kmax**n: kmax<<=1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if p(kmid) > kmid**n: kmax = kmid else: kmin = kmid return kmin # Chai Wah Wu, Jan 21 2025
Formula
Corresponds to the ultimate occurrence of n in A033810. For large n, m has magnitude n^2 / 2 * log(2).
Extensions
Edited and extended by Robert G. Wilson v, Jul 23 2002
More terms from David Terr, Jan 03 2005
Comments