cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072834 Exponents occurring in expansion of F_8(q^2).

Original entry on oeis.org

0, 7, 12, 15, 16, 23, 28, 31, 32, 39, 44, 47, 48, 55, 60, 63, 64, 71, 76, 79, 80, 87, 92, 95, 96, 103, 108, 111, 112, 119, 124, 127, 128, 135, 140, 143, 144, 151, 156, 159, 160, 167, 172, 175, 176, 183, 188, 191, 192, 199, 204, 207, 208, 215, 220, 223, 224, 231, 236, 239, 240, 247
Offset: 0

Views

Author

N. J. A. Sloane, Jul 25 2002

Keywords

Crossrefs

Cf. A023919.

Programs

  • Mathematica
    f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; F[8, q_]:= ( f[q^4, q^4]^7 + (2*q*f[q^8, q^24])^7 + 14*f[q^2, q^2]^2*f[q^4, q^4]^5 - 7*f[q^4, q^4]^3*f[q^2, q^2]^4)/8; cfs = CoefficientList[Series[F[6, q], {q, 0, 500}], q]; Take[Pick[Range[Length[cfs]] - 1, Sign[Abs[cfs]], 1], 50] (* G. C. Greubel, Apr 16 2018 *)

Formula

Empirical g.f.: x*(x^3+3*x^2+5*x+7) / (x^5-x^4-x+1). - Colin Barker, Jul 31 2013
Conjecture: a(n) = 4*n + pa(n mod 4), where pa(k) = 0,3,4,3 for k=0,1,2,3 respectively; lim_{n->infinity} a(n)/n = 4; a(n)/n >= 4; a(n+4) = a(n) + 16. - Jerzy R Borysowicz, Jan 16 2022

Extensions

Terms a(25) onward added by G. C. Greubel, Apr 16 2018