cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072863 a(n) = 2^(n-3)*(n^2+3*n+8).

Original entry on oeis.org

1, 3, 9, 26, 72, 192, 496, 1248, 3072, 7424, 17664, 41472, 96256, 221184, 503808, 1138688, 2555904, 5701632, 12648448, 27918336, 61341696, 134217728, 292552704, 635437056, 1375731712, 2969567232, 6392119296, 13723762688
Offset: 0

Views

Author

Michael A. Childers (childers_moof(AT)yahoo.com), Jul 27 2002

Keywords

Comments

Binomial transform of 1+n*(n+1)/2, A000124.
Number of 123-avoiding ternary words of length n-1.
Row sums of triangle A134247. Also double binomial transform of (1, 1, 1, 0, 0, 0, ...). - Gary W. Adamson, Oct 15 2007
Equals row sums of triangle A144333. - Gary W. Adamson, Sep 18 2008

Crossrefs

Programs

  • Maple
    A072863 := proc(n)
        2^(n-3)*(n^2+3*n+8) ;
    end proc: # R. J. Mathar, May 21 2018
  • Mathematica
    Table[Sum[Binomial[m-1, k](#^2/2 -#/2 +1 &)[k+1], {k, 0, m}], {m, 36}]
    LinearRecurrence[{6,-12,8},{1,3,9},30] (* Harvey P. Dale, May 15 2019 *)
  • PARI
    a(n)=2^(n-3)*(n^2+3*n+8); \\ Charles R Greathouse IV, Oct 07 2015

Formula

From Paul Barry, Jul 22 2004: (Start)
G.f.: (1-3x+3x^2)/(1-2x)^3;
a(n) = 2^(n-3)*(n^2+3n+8). (End)
From Paul Barry, Mar 27 2007: (Start)
E.g.f.: e^(2*x)*(1+x+x^2/2);
a(n) = Sum_{k=0..2} binomial(n,k)*2^(n-k). (End)
a(n-1) + A001788(n-2) = A104270(n). - R. J. Mathar, May 21 2018

Extensions

Corrected and extended by Wouter Meeussen, Jul 30 2002
Title and offset corrected. - R. J. Mathar, May 21 2018
New name using explicit formula. - Joerg Arndt, May 21 2018