A072863 a(n) = 2^(n-3)*(n^2+3*n+8).
1, 3, 9, 26, 72, 192, 496, 1248, 3072, 7424, 17664, 41472, 96256, 221184, 503808, 1138688, 2555904, 5701632, 12648448, 27918336, 61341696, 134217728, 292552704, 635437056, 1375731712, 2969567232, 6392119296, 13723762688
Offset: 0
Links
- P. Braendeen and T. Mansour, Finite automata and pattern avoidance in words
- Tosic R., Masulovic D., Stojmenovic I., Brunvoll J., Cyvin B. N. and Cyvin S. J., Enumeration of polyhex hydrocarbons to h = 17, J. Chem. Inf. Comput. Sci., 1995, 35, 181-187, Table 1, with an error at h=16.
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
Programs
-
Maple
A072863 := proc(n) 2^(n-3)*(n^2+3*n+8) ; end proc: # R. J. Mathar, May 21 2018
-
Mathematica
Table[Sum[Binomial[m-1, k](#^2/2 -#/2 +1 &)[k+1], {k, 0, m}], {m, 36}] LinearRecurrence[{6,-12,8},{1,3,9},30] (* Harvey P. Dale, May 15 2019 *)
-
PARI
a(n)=2^(n-3)*(n^2+3*n+8); \\ Charles R Greathouse IV, Oct 07 2015
Formula
From Paul Barry, Jul 22 2004: (Start)
G.f.: (1-3x+3x^2)/(1-2x)^3;
a(n) = 2^(n-3)*(n^2+3n+8). (End)
From Paul Barry, Mar 27 2007: (Start)
E.g.f.: e^(2*x)*(1+x+x^2/2);
a(n) = Sum_{k=0..2} binomial(n,k)*2^(n-k). (End)
Extensions
Corrected and extended by Wouter Meeussen, Jul 30 2002
Title and offset corrected. - R. J. Mathar, May 21 2018
New name using explicit formula. - Joerg Arndt, May 21 2018
Comments