cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072905 a(n) is the least k > n such that k*n is a square.

Original entry on oeis.org

4, 8, 12, 9, 20, 24, 28, 18, 16, 40, 44, 27, 52, 56, 60, 25, 68, 32, 76, 45, 84, 88, 92, 54, 36, 104, 48, 63, 116, 120, 124, 50, 132, 136, 140, 49, 148, 152, 156, 90, 164, 168, 172, 99, 80, 184, 188, 75, 64, 72, 204, 117, 212, 96, 220, 126, 228, 232, 236, 135, 244, 248
Offset: 1

Views

Author

Benoit Cloitre, Aug 10 2002

Keywords

Comments

From Peter Kagey, Jun 22 2015: (Start)
a(n) is a bijection from the positive integers to A013929 (numbers that are not squarefree). Proof:
(1) Injection: Suppose that b
(2) Surjection: Given some number k in A013929, a(A007913(k)*(A000188(k)-1)^2.) = k (End)

Examples

			12 is the smallest integer > 3 such that 3*12 = 6^2 is a perfect square, hence a(3) = 12.
		

Crossrefs

Programs

  • Haskell
    a072905 n = head [k | k <- [n + 1 ..], a010052 (k * n) == 1]
    -- Reinhard Zumkeller, Feb 07 2015
    
  • Maple
    f:= proc(n) local F,f,x,y;
         F:= ifactors(n)[2];
         x:= mul(`if`(f[2]::odd,f[1],1),f=F);
         y:= mul(f[1]^floor(f[2]/2),f=F);
         x*(y+1)^2
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 23 2015
  • Mathematica
    a[n_] := For[k = n+1, True, k++, If[IntegerQ[Sqrt[k*n]], Return[k]]]; Array[a, 100] (* Jean-François Alcover, Jan 26 2018 *)
  • PARI
    a(n)=if(n<0,0,s=n+1; while(issquare(s*n)==0,s++); s)
    
  • PARI
    a(n)=my(c=core(n)); (sqrtint(n/c)+1)^2*c \\ Charles R Greathouse IV, Jun 23 2015
    
  • Ruby
    def a(n)
      k = Math.sqrt(n).to_i
      k -= 1 until n % k**2 == 0
      n + 2*n/k + n/(k**2)
    end # Peter Kagey, Jul 27 2015

Formula

a(n) = n + A067722(n). - Peter Kagey, Feb 05 2015
a(n) = A007913(n)*(A000188(n)+1)^2. - Peter Kagey, Feb 06 2015
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 + 2*zeta(3)/zeta(2) + Pi^2/15 = 3.11949956554216757204... . - Amiram Eldar, Feb 17 2024