A072978 Numbers of the form m*2^Omega(m), where m>1 is odd and Omega(m)=A001222(m), the number of prime factors of m.
1, 6, 10, 14, 22, 26, 34, 36, 38, 46, 58, 60, 62, 74, 82, 84, 86, 94, 100, 106, 118, 122, 132, 134, 140, 142, 146, 156, 158, 166, 178, 194, 196, 202, 204, 206, 214, 216, 218, 220, 226, 228, 254, 260, 262, 274, 276, 278, 298, 302, 308, 314, 326, 334, 340, 346
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Join[{1}, Select[Range[2, 500, 2], First[#] == Total[Rest[#]] & [FactorInteger[#][[All, 2]]] &]] (* Paolo Xausa, Feb 19 2025 *)
-
PARI
isok(k) = {my(v = valuation(k, 2)); bigomega(k >> v) == v;} \\ Amiram Eldar, May 15 2025
-
Python
from math import prod, isqrt from sympy import primerange, integer_nthroot, primepi def A072978(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def h(x,n): return sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,3,1,n)) def f(x): return int(n+x-primepi(x>>1)-sum(h(x>>m,m) for m in range(2,x.bit_length()+1))) if x>1 else 1 return bisection(f,n,n) # Chai Wah Wu, Apr 10 2025
Comments