cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072978 Numbers of the form m*2^Omega(m), where m>1 is odd and Omega(m)=A001222(m), the number of prime factors of m.

Original entry on oeis.org

1, 6, 10, 14, 22, 26, 34, 36, 38, 46, 58, 60, 62, 74, 82, 84, 86, 94, 100, 106, 118, 122, 132, 134, 140, 142, 146, 156, 158, 166, 178, 194, 196, 202, 204, 206, 214, 216, 218, 220, 226, 228, 254, 260, 262, 274, 276, 278, 298, 302, 308, 314, 326, 334, 340, 346
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2002

Keywords

Comments

(number of odd prime factors) = (number of even prime factors).
A000400, A011557, A001023, A001024, A009965, A009966 and A009975 are subsequences. - Reinhard Zumkeller, Jan 06 2008
Subsequence of A028260. - Reinhard Zumkeller, Sep 20 2008

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[2, 500, 2], First[#] == Total[Rest[#]] & [FactorInteger[#][[All, 2]]] &]] (* Paolo Xausa, Feb 19 2025 *)
  • PARI
    isok(k) = {my(v = valuation(k, 2)); bigomega(k >> v) == v;} \\ Amiram Eldar, May 15 2025
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A072978(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def h(x,n): return sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,3,1,n))
        def f(x): return int(n+x-primepi(x>>1)-sum(h(x>>m,m) for m in range(2,x.bit_length()+1))) if x>1 else 1
        return bisection(f,n,n) # Chai Wah Wu, Apr 10 2025
    

Formula

A007814(a(n)) = A087436(a(n)). - Reinhard Zumkeller, Jan 06 2008