A072980 Numerator of b(n) = Sum_{k'<=n} 1/k', where k' denotes the squarefree numbers.
1, 3, 11, 11, 61, 11, 82, 82, 82, 171, 1951, 1951, 26133, 13424, 41273, 41273, 716656, 716656, 13871719, 13871719, 4700888, 9548741, 222854273, 222854273, 222854273, 112857219, 112857219, 112857219, 3310041496, 20075905417
Offset: 1
Examples
Fractions begin with 1, 3/2, 11/6, 11/6, 61/30, 11/5, 82/35, 82/35, 82/35, 171/70, 1951/770, 1951/770, ...
Links
- Ivan Niven, A Proof of the Divergence of sum 1/p, The American Mathematical Monthly, Vol. 78, No. 3 (Mar., 1971), pp. 272-273.
Programs
-
Mathematica
Accumulate[Table[If[SquareFreeQ[n], 1, 0]/n, {n, 1, 50}]] // Numerator (* Amiram Eldar, Apr 22 2025 *)
-
PARI
a(n) = numerator(sum(k=1, n, issquarefree(k)/k)); \\ Michel Marcus, Nov 28 2013
Comments